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Chapter 1

Homomorphisms

1.1 Cosets and Coset Spaces

Prerequisites: Subgroups

If A < G is a subgroup, and g ∈ G, then the corresponding left and right cosets of A are
the sets

gA = {ga ; a ∈ A}, and Ag = {ag ; a ∈ A}.

Example 1:

(a) Let G = (Z,+), and let A = 5Z = {5z ; z ∈ Z} = {. . . ,−5, 0, 5, 10, 15, . . .}.
Then 3 + 5Z = {3 + 5z ; z ∈ Z} = {. . . ,−2, 3, 8, 13, 18, . . .}. Note that Z is
abelian, so A+ 3 = 3 +A.

(b) Let G = S3 =
{

e, (12), (13), (23), (123), (132)
}

, and let A =
{

e, (12)
}

. Then

(123) · A =
{

(123), (123)(12)
}

=
{

(123), (13)
}

, but

A · (123) =
{

(123), (12)(123)
}

=
{

(123), (23)
}

, so (123) · A 6= A · (123).

(c) Again, let G = S3, and let A = A3 =
{

e, (123), (132)
}

. Then

(12) ·A3 =
{

(12), (12)(123), (12)(132)
}

=
{

(12), (23), (13)
}

.

Also, (12) ·A3 =
{

(12), (123)(12), (132)(12)
}

=
{

(12), (13), (23)
}

,

so that (12)A3 = A3(12).

(d) Let X and Y be groups, and consider the product group

G = X × Y = {(x, y) ; x ∈ X and y ∈ Y}.

3



4 CHAPTER 1. HOMOMORPHISMS

Let A = {(eX , y) ; y ∈ Y} = {eX } × Y. Then for any (x, y1) ∈ G,

(x, y1)·A = {(x, y1) · (eX , y2) ; y2 ∈ Y} = {(x, y1y2) ; y ∈ Y} = {(x, y) ; y ∈ Y}
= {x} × Y.

Lemma 2 Let G be a group and let A < G be a subgroup.

(a) For any g ∈ G,
(

gA = A
)

⇐⇒
(

g ∈ A
)

⇐⇒
(

Ag = A
)

.

(b) For any g, h ∈ G, the following are equivalent:

(

g ∈ hA
)

⇐⇒
(

gA = hA
)

⇐⇒
(

h ∈ gA
)

⇐⇒
(

h−1g ∈ A
)

⇐⇒
(

g−1h ∈ A
)

Likewise, the following are equivalent:

(

g ∈ Ah
)

⇐⇒
(

Ag = Ah
)

⇐⇒
(

h ∈ Ag
)

⇐⇒
(

hg−1 ∈ A
)

⇐⇒
(

gh−1 ∈ A
)

Proof: Exercise 1 2

Example 3:

(a) Let G = (Z,+), and let A = 5Z as in Example 〈1a〉. Then

10 + 5Z = {10 + 5z ; z ∈ Z} = {. . . , 5, 10, 15, 20, 25, . . .} = 5Z.

(b) Let G = S3 and let A = A3 =
{

e, (123), (132)
}

, as in Example 〈1c〉. Then

(123) ·A3 =
{

(123), (132), e
}

= A3.

(c) Let X and Y be groups; let G = X × Y and let A = {eX } × Y , as in Example 〈1d〉.
Then for any y ∈ Y, (eG , y) · A = {eX } × Y = A.

The left coset space of A is the set of all its left cosets:

G/A = {gA ; g ∈ G}.

Example 4:

(a) Let G = (Z,+), and let A = 5Z as in Example 〈1a〉. Then

Z
5Z

= {5Z, 1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z}.



1.2. LAGRANGE’S THEOREM 5

(b) Let G = S3, and let A =
{

e, (12)
}

, as in Example (1b). Then

S3

A
=

{

A, (123)A, (23)A
}

=
{

{e, (12)}, {(123), (13)}, {(23), (132)}
}

.

(c) Let G = S3, and let A = A3 =
{

e, (123), (132)
}

, as in Example 〈1c〉. Then

S3

A3

=
{

A3, (12)A3

}

=
{

{e, (123), (132)} , {(12), (23), (13)}
}

.

(d) Let X and Y be groups; let G = X × Y , and let A = {eX } × Y , as in Example 〈1d〉.
Then

G
A

= {Ax ; x ∈ X}, where, for any fixed x ∈ X , Ax = {(x, y) ; y ∈ Y}.

1.2 Lagrange’s Theorem

Prerequisites: §1.1

Let S1,S2, . . . ,SN ⊂ G be a collection of subsets of G. We say that G is a disjoint union
of S1, . . . ,SN if:

1. G = S1 ∪ S2 ∪ . . . ∪ SN .

2. Sn ∩ Sm = ∅, whenever n 6= m.

We then write: “G = S1 t S2 t . . . t SN”, or “G =
N
⊔

n=1

Sn”. We say that the collection

S = {S1,S2, . . . ,SN} is a partition of G.
More generally, let S be any (possibly infinite) collection of subsets of G. We say that G is

a disjoint union of the elements in S if:

1. G =
⋃

S∈S

S.

2. S ∩ S ′ = ∅, whenever S and S ′ are distinct elements of S.

We then write: “G =
⊔

S∈S

S”. We say that S is a partition of G.

Lemma 5 Let G be a group and A a subgroup. Then G/A is a partition of G.

In other words:

1. Any two cosets of A are either identical or disjoint: for any g1, g2 ∈ G, either g1A = g2A,
or (g1A) ∩ (g2A) = ∅.
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2. G =
⊔

(gA) ∈ G/A

(gA).

Proof: Exercise 2 Hint: Apply Lemma 2(b) 2

Example 6:

(a) Let G = (Z,+), and let A = 5Z as in Example 〈4a〉. Then

Z = {. . . ,−5, 0, 5, 10, . . .} t {. . . ,−4, 1, 6, 11, . . .} t {. . . ,−3, 2, 7, 12, . . .}
t {. . . ,−2, 3, 8, 13, . . .} t {. . . ,−1, 4, 9, 14, . . .}

= (5Z) t (1 + 5Z) t (2 + 5Z) t (3 + 5Z) t (4 + 5Z) =
⊔

(n+5Z) ∈ Z/5Z

(n+ 5Z).

(b) Let G = S3, and let A =
{

e, (12)
}

, as in Example (4b). Then

S3 =
{

e, (12)
}

t
{

(123), (13)
}

t
{

(23), (132)
}

= A t (123)A t (23)A

=
⊔

(gA) ∈ S3/A

(gA).

(c) Let X and Y be groups; let G = X ×Y , and let A = {eX }×Y , as in Example 〈4d〉. For

any fixed x ∈ X , let Ax = {(x, y) ; y ∈ Y}. Then G =
⊔

x∈X

Ax =
⊔

(x,y)A ∈ G/A

(x, y)A.

If G/A is a finite set, then the index of A in G is the cardinality of G/A. It is sometimes
denoted by “|G : A|”.

Corollary 7 Lagrange’s Theorem

Let G be a finite group and let A be any subgroup. Then:

1. |G| = |A| ·
∣

∣

∣

∣

G
A

∣

∣

∣

∣

.

2. In particular, |A| divides |G|.

Proof:

Claim 1: For any g ∈ G, |gA| = |A|.

Proof: Define a map φ : A−→gA by: φ(a) = ga. It is Exercise 3 to verify that φ is a
bijection. Thus, |gA| = |A|. ........................................ 2 [Claim 1]
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Now, Lemma 5 says that the cosets of A partition G. Since G is finite, we know that there
are a finite number of distinct cosets for A —let’s say they are (g1A), (g2A), . . . , (gNA),
for some elements g1, g2, . . . , gN ∈ G. Thus,

G = (g1A) t (g2A) t . . . t (gNA),

therefore, |G| = |g1A| + |g2A| + . . . + |gNA|.

Clm.1
|A| + |A| + . . . + |A|
︸ ︷︷ ︸

N

= N · |A|,

where N is the number of distinct cosets—that is, N = |G/A|. 2

1.3 Normal Subgroups & Quotient Groups

Prerequisites: §1.1; Homomorphisms

Let A < G be a subgroup. We say that A is normal if gA = Ag for every g ∈ G. We
indicate this by writing “A� G”.

Example 8:

(a) Let G = Z and let A = 5Z, as in Example 4a. Then A is normal in Z, because for any
n ∈ Z, n+ 5Z = {n+ 5z ; z ∈ Z} = {5z + n ; z ∈ Z} = 5Z+ n.

(b) In general, if G is any abelian group, then every subgroup is normal (Exercise 4).

(c) Let G = S3, and let A =
{

e, (12)
}

, as in Example 〈1b〉. Then A is not normal in S3,

because (123) · A 6= A · (123).

(d) Let G = S3, and let A = A3, as in Example 〈4c〉. Then A3 is normal in S3, because
the only nontrivial left coset of A3 is (12)A3, and the only nontrivial right coset of A3 is
A3(12), and we saw in Example (1c) that (12)A3 = A3(12).

(e) Let X and Y be groups; let G = X × Y , and let A = {eX } × Y , as in Example 〈4d〉.
Then A is normal, because for any (x, y) ∈ G, (x, y) · A = Ax = A · (x, y).

If A,B ⊂ G are subsets, then their product is the set AB = {ab ; a ∈ A and b ∈ B}. In
particular, if (gA) and (hA) are two cosets of A, then their product is the set:

(gA)(hA) = {ga1ha2 ; a1, a2 ∈ A}. (1.1)

Example 9:
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(a) Let G = (Z,+) and let A = 5Z, as in Example (4a). Let g = 1 and h = 2. Then

1 + 5Z = {. . . ,−9,−4, 1, 6, 11, 16, . . .}
and 2 + 5Z = {. . . ,−8,−3, 2, 7, 12, 17, . . .},

so (1 + 5Z) + (2 + 5Z) = {. . . ,−7,−2, 3, 8, 13, 18, . . .} = (3 + 5Z).

(b) Let X and Y be groups; let G = X × Y , and let A = {eX } × Y , as in Example 〈4d〉.
Then for any (x1, y1) and (x2, y2) in G,

(x1, y1) · A = {(x1, y
′) ; y′ ∈ Y},

and (x2, y2) · A = {(x2, y
′′) ; y′′ ∈ Y},

so that (x1, y1) · A · (x2, y2) · A = {(x1, y
′) · (x2, y

′′) ; y′ ∈ Y and y′′ ∈ Y}

=
{(

(x1x2), (y′y′′)
)

; y′ ∈ Y and y′′ ∈ Y
}

=
{(

(x1x2), y
)

; y ∈ Y
}

=
(

x1x2, eY
)

· A,

where eY is the identity element in Y . Thus, the multiplication of cosets in G/A ‘mimics’
the multiplication of elements in X .

Lemma 10 Let G be a group.

(a) Subset multiplication in G is associative. That is, for any subsets A,B, C ⊂ G,

A · (B · C) = (A · B) · C.

(b) If A < G is a subgroup of G, then A · A = A.

Proof: Exercise 5 2

If Φ : G−→H is a group homomorphism, recall that the kernel of Φ is the subgroup:

ker(Φ) = {g ∈ G ; Φ(g) = eH}.

Proposition 11 Let G be a group, and let A < G be a subgroup. The following are

equivalent:

(a) A = ker(Φ) for some group homomorphism Φ : G−→H (where H is some group).

(b) For any g ∈ G, gAg−1 = A.

(c) A� G.
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(d) The coset space G/A is a group under the multiplication operation (1.1). Furthermore:

1. For any g, h ∈ G, (gA)(hA) = (gh)A.

2. Define π : G−→G/A by: π(g) = gA. Then π is a group epimorphism, and
ker(π) = A.

Proof: (a)=⇒(b) Suppose A = ker(Φ), and let g ∈ G. Then gAg−1 = {gag−1 ; a ∈ A},
and we want to show this set is just A.

Claim 1: gAg−1 ⊆ A.

Proof: Let gag−1 be some element of gAg−1. Then Φ (gag−1) = Φ(g) · Φ(a) · Φ(g−1) =
Φ(g) · eH · Φ(g)−1 = Φ(g) · Φ(g)−1 = eH . Thus, gag−1 ∈ A. .......... 2 [Claim 1]

Claim 2: A ⊆ gAg−1.

Proof: It follows from Claim 1 that g−1Ag ⊆ A (just use g−1 in place of g). Thus,
g(g−1Ag)g−1 ⊆ gAg−1. But g(g−1Ag)g−1 = (gg−1)A(gg−1) = eGAeG = A. In other
words, A ⊆ gAg−1. ................................................. 2 [Claim 2]

It follows from Claims 1 and 2 that gAg−1 = A.

(b)=⇒(c) Let g ∈ G. Then gA = gA(gg−1) = (gAg−1)g
(b)
Ag. This holds for any

g ∈ G, so A� G.

(c)=⇒(d) We will prove this in several steps...

Claim 3: (gA)(hA) = (gh)A.

Proof: (gA)(hA)
Lem.10(a)

g(Ah)A
A�G

g(hA)A
Lem.10(a)

(gh)A·A
Lem.10(b)

(gh)A.

2 [Claim 3]

Claim 4: G/A is a group.

Proof: It follows from Claim 3 that G/A is closed under multiplication. By Lemma 10(a),
this multiplication is associative. By applying Claim 3, it is easy to verify:

1. The identity element of G/A is just the coset eGA = A.

2. For any g ∈ G, the inverse of the coset gA is just the coset g−1A.

Thus, G/A satisfies all the properties of a group ....................... 2 [Claim 4]

Claim 5: π : G−→G/A is a homomorphism.

Proof: π(g · h) = (gh) · A
Clm.3

(gA) · (hA) = π(g) · π(h). .. 2 [Claim 5]

Also, π is surjective: any element of G/A is a coset of the form gA for some g ∈ G, and thus,
gA = π(g). Thus, π is an epimorphism.

Claim 6: ker(π) = A.
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Proof: Let g ∈ G. Then
(

g ∈ ker(π)
)

⇐⇒
(

π(g) = eG/A

)

⇐⇒
(

gA = A
)

⇐Lem.2(a)⇒
(

g ∈ A
)

. ............................................... 2 [Claim 6]

(d)=⇒(a) This follows immediately: let H = G/A and let Φ = π. 2

The group G/A is called the quotient group, and the epimorphism π : G−→G/A is called
the projection map or quotient map.

1.4 The Fundamental Isomorphism Theorem

Prerequisites: §1.3

Theorem 12 Fundamental Isomorphism Theorem

Let G and H be groups, and let φ : G−→H be a
group homomorphism, with image I = φ(G) ⊂ H,
and kernel K. Then:

(a) I ∼= G/K.

(b) For any g ∈ G with h = φ(g), the φ-
preimage of h is the g-coset of K. That is:

φ−1{h} = gK. 2

g1

g2

g
1 g
2

h1 h2e

e

=
k
e
r
(

Φ
)

Example 13:

(a) Let G = Z and H = Z/3, and let Φ : Z 3 n 7→ [n]3 ∈ Z/3 (see Figure 1.1a). Then K = 3Z,
so I = Z/3 = Z/(3Z) = G/K.

Observe: φ(5) = [5]3 = [2]3, and thus, φ−1{[2]3} = 5+3Z = {. . . ,−1, 2, 5, 8, 11, . . .}.

(b) Let A and B be groups, and let G = A × B (see Figure 1.1b). Let Φ : G−→A be the
projection map; that is, Φ(a, b) = a. Then

ker(Φ) = {(eA , b) ; b ∈ B} = {eA} × B

is a subgroup isomorphic to B. Thus, the Fundamental Isomorphism Theorem says:

A × B
{eA} × B

=
G

ker(φ)
∼= A.

For any fixed (a, b) ∈ G, observe that φ(a, b) = a. Thus,

φ−1{a} = (a, b) · {(eA , b′) ; b′ ∈ B} = {(a, b′) ; b′ ∈ B}.
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6

3

0

−3

−6

0

Z

Z/3

5

2

−1

−4

−7

2

4

1

−2

−5

1

−8

8

9

7

Ker(Φ) = 3 Z = {...-6, -3, 0, 3, 6, 9, ...}

Φ: Z Z/3n [n]3

e

e

Φ

(a) (b)

Figure 1.1: Examples (13a) and (13b)

(c) Let G = S3, and let A = A3, as in Example 〈8d〉. Then A3 is normal in S3, and
S3/A3 = {A3, (12)A3} is a two-element group, isomorphic to (Z/2,+), via the map
φ : Z/2−→S3/A3 defined: φ(0̄) = A3 and φ(1̄) = (12)A3.

Proof of Theorem 129: (a) We will build an explicit isomorphism between I and G/K.

Claim 1: For any g1, g2 ∈ G,
(

g1K = g2K
)

⇐⇒
(

φ(g1) = φ(g2)
)

.

Proof:
(

g1K = g2K
)

⇐Lem.2(b)⇒
(

g−1
2 g1 ∈ K

)

⇐⇒
(

φ(g−1
2 g1) = eH

)

⇐⇒
(

φ(g2)−1 · φ(g1) = eH

)

⇐⇒
(

φ(g1) = φ(g2)
)

. .... 2 [Claim 1]

Define the map Ψ : G/K−→I by: Ψ(gK) = φ(g).

Claim 2: Ψ is well-defined and injective.

Proof: For any g1, g2 ∈ G,
(

g1K = g2K
)

⇐ Clm.1⇒
(

φ(g1) = φ(g2)
)

⇐⇒
(

Ψ(g1K) = Ψ(g2K)
)

. ............................................. 2 [Claim 2]
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Claim 3: Ψ is surjective.

Proof: By definition, any i ∈ I is the image of some g ∈ G —ie. φ(g) = i. Thus,
Ψ(gK) = i. ........................................................ 2 [Claim 3]

Claim 4: Ψ is a homomorphism.

Proof: For any cosets g1K and g2K in G/K,

Ψ
(

(g1K)(g2K)
)

(∗)
Ψ
(

(g1g2)K
)

= φ(g1g2) = φ(g1)·φ(g2) = Ψ(g1K)·Ψ(g2K),

where (∗) follows from Proposition 11(d) part 1 ........................ 2 [Claim 4]

(b) Let g′ ∈ G. Then:
(

g′ ∈ gK
)

⇐Lem2(b)⇒
(

g′K = gK
)

⇐Clm.1⇒
(

φ(g′) = φ(g) = h
)

⇐⇒
(

g′ ∈ φ−1{h}
)

. 2

Corollary 14 Let φ : G−→H be a group homomorphism. Then

(

φ is injective
)

⇐⇒
(

kerφ = {eG}
)

.

Proof: Exercise 6 2



Chapter 2

The Isomorphism Theorems

2.1 The Diamond Isomorphism Theorem

Prerequisites: §1.4

Let G be a group and B < G a subgroup. The normalizer of B in G is the subgroup

Nrmlzr
G (B) = {g ∈ G ; gB = Bg}.

Thus, Nrmlzr
G (B) is ‘the set of all elements of G who think that B is normal’.

Lemma 15 Let G be a group with subgroup B < G. Then:

(a) B < Nrmlzr
G (B) < G.

(b)
(

B � G
)

⇐⇒
(

Nrmlzr
G (B) = G

)

.

Proof: Exercise 7 2

Thus, the condition “A ⊂ Nrmlzr
G (B)” is true automatically if B is a normal subgroup of G.

Recall that A · B = {a · b ; a ∈ B, b ∈ A}. In general, AB is not a subgroup of G. But AB
is a subgroup under the conditions of the following theorem...

13
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Theorem 16 Diamond Isomorphism Theorem

Let G be a group, with subgroups A and B. Suppose that
A ⊂ Nrmlzr

G (B). Then:

(a) A · B is a subgroup of G.

(b) B � (A · B).

(c) (A ∩ B) �A.

(d) There is an isomorphism:
A · B
B

∼=
A
A ∩ B

given by the map

Φ :
A · B
B

−→ A
A ∩ B

(ab)B 7→ a · (A ∩ B)

O
Proof: (a) Let a1b1 and a2b2 be elements of AB. We must show that a1b1(a2b2)−1 is also

in AB. But

a1b1(a2b2)−1 = a1b1b
−1
2 a−1

2 = a1(b1b
−1
2 )a−1

2 (∗)
a1a

−1
2 b3 = (a1a

−1
2 )b3 ∈ AB.

To see (∗), recall that A ⊂ Nrmlzr
G (B), so Ba−1

2 = a−1
2 B. Thus (b1b

−1
2 )a−1

2 = a−1
2 b3 for some

b3 ∈ B.

(b) and (c) Exercise 8 .

(d) [In progress...]

Claim 1: For any a ∈ A and b ∈ B, (ab)B = aB
2

Example 17:

(a) Let X , Y , and Z be groups, and let G = X × Y × Z, as shown in Figure 2.1. Define:

A = X × {eY} × Z =
{

(x, eY , z) ; x ∈ X , z ∈ Z
}

,
and B = {eX } × Y × Z = {(eX , y, z) ; y ∈ Y, z ∈ Z}.

Then:
AB = X × Y × Z = G,

and A ∩ B = {eX } × {eY} × Z =
{

(eX , eY , z) ; z ∈ Z
}

.

Thus,
AB
B

=
X × Y × Z
{eX } × Y × Z

∼= X ∼=
X × {eY} × Z
{eX } × {eY} × Z

=
A
A ∩ B

.
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Figure 2.1: Example 〈17a〉.

2.2 The Chain Isomorphism Theorem

Prerequisites: §1.4

Let G be a group, with normal subgroup A � G. Suppose A < B < G. Then A is also a
normal subgroup of B, and the quotient group

B
A

= {bA ; b ∈ B}

is a subset of the quotient group
G
A

= {gA ; g ∈ G}.

Theorem 18 Chain Isomorphism Theorem

Let G be a group, with normal subgroups A� G and B � G. Suppose A < B. Then:

(a)
B
A

is a normal subgroup of
G
A

.

(b) There is an isomorphism
(G/A)

(B/A)
∼=

G
B

.

(c) Use ‘bar’ notation to denote elements of G/A. Thus, gA = g, B/A = B, G/A = G,

and
G/A
B/A

= G/B. Then the isomorphism Φ : G/B−→G/B is defined: Φ
(

gB
)

= gB.
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mod

OO

O

O

mod

mod

m
o
dm
o
d

m
o
d

isomorphism

isomorphism

m
o
d

Figure 2.2: The Chain Isomorphism Theorem

0 0

00

Figure 2.3: Example 〈19a〉.
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Example 19:

(a) Let X , Y , and Z be groups, and let G = X × Y × Z. Define:

A = X × {eY} × {eZ} =
{

(x, eY , eZ ) ; x ∈ X
}

,
and B = X × Y × {eZ} = {(x, y, eZ ) ; x ∈ Z, y ∈ Y}.

Then:
G
A

=
X × Y × Z

X × {eY} × {eZ}
∼= Y × Z;

B
A

=
X × Y × {eZ}
X × {eY} × {eZ}

∼= Y × {eZ};

and
G
B

=
X × Y × Z
X × Y × {eZ}

∼= Z.

Thus,
(G/A)

(B/A)
∼=

Y × Z
Y × {eZ}

∼= Z ∼=
G
B

.

2.3 The Lattice Isomorphism Theorem

Prerequisites: §2.2

If G is a group, recall that the subgroup lattice of G is a directed graph L(G), whose vertices
are the subgroups of G. We draw a (directed) edge from subgroup A to subgroup B if A < B
and there is no C such that A < C < B. The graph is drawn on paper so that A appears below
B on the page if and only if A < B.

This graph is called a lattice because it has two special properties:

1. For any subgroups A,B < G, there is a minimal subgroup of G which contains both A
and B —namely, the join of A and B:

〈A,B〉 = {a1b1a2b2 . . . anbn ; n ∈ N, a1, a2, . . . , an ∈ A, and b1, b2, . . . , bn ∈ B}.

2. For any subgroups A,B < G, there is a maximal subgroup of G which is contained in both
A and B —namely, their intersection A ∩ B.

Let N � G. We will adopt the ‘bar’ notation for objects in the quotient group G/N . Thus,
G = G/N . If g ∈ G, then g = gN ∈ G. IfN < A < G, thenA = A/N = {aN ; a ∈ A} ⊂ G.

Theorem 20 Lattice Isomorphism Theorem

Let G be a group and let N � G be a normal subgroup. Let G = G/N . Let L(G) be the
subgroup lattice of G, and let LN (G) be the ‘fragment’ of L(G) consisting of all subgroups which
contain N . That is:

LN (G) = {A < G ; N < A}.
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N

0

G

B
A

C
D

<C,D>

C D

G

B
A

C
D

<C,D>

C D

{e}

L(G) L(G)

Figure 2.4: The Lattice Isomorphism Theorem

Then there is an order-preserving bijection from LN (G) into L(G), given:

LN (G) 3 A 7→ A ∈ L(G).

Furthermore, for any A,B, C,D ∈ LN (G),

(a)
(

A < B
)

⇐⇒
(

A < B
)

, and in this case, |B : A| = |B : A|.

(b) 〈C,D〉 =
〈

C,D
〉

.

(c) C ∩ D = C ∩ D.

(d)
(

A� G
)

⇐⇒
(

A� G
)

, and in this case, G/A ∼= G/A.

Proof: (d) just restates the Chain Isomorphism Theorem. The proofs of (a,b,c) are
Exercise 9 . 2



Chapter 3

Free Abelian Groups

3.1 Rank and Linear Independence

Let (A,+) be an (additive) abelian group and let a1, . . . , aR ∈ A. We say that a1, a2, . . . , aR
are Z-linearly independent if there exist no z1, z2, . . . , zR ∈ Z (not all zero) such that z1a1 +
z2a2 + . . .+zRaR = 0. This is a natural generalization of the notion of linear independence for
vector spaces. The rank of A is the maximal cardinality of any linearly independent subset.
In other words:

(

rank (A) = R
)

⇐⇒







1. There exists a linearly independent set {a1,a2, . . . ,aR} ⊂ A.

2. For any b1,b2, . . . ,bR,bR+1 ∈ A, there exist z1, z2, . . . , zR, zR+1 ∈ Z
(not all zero) so that z1b1 + z2b2 + . . .+ zRbR + zR+1bR+1 = 0.







Think of rank as a notion of ‘dimension’ for abelian groups.

Example 21:

(a) rank (Z,+) = 1. First, we’ll show that rank (Z) ≥ 1. To see this, let a ∈ Z be nonzero.
Then z · a 6= 0 for all z ∈ Z, so the set {a} is Z-linearly independent.

Next, we’ll show that rank (Z) ≤ 1. Suppose a1, a2 ∈ Q were nonzero. Let z1 = a2 and
z2 = −a1. Then z1a1 + z2a2 = a2a1 − a1a2 = 0. So any set {a1, a2} with two elements
is linearly dependent.

(b) rank (Q,+) = 1.

First, we’ll show that rank (Q) ≥ 1. To see this, let q ∈ Q be nonzero. Then z · q 6= 0 for
all z ∈ Z, so the set {q} is Z-linearly independent.

Next, we’ll show that rank (Q) ≤ 1. Suppose q1, q2 ∈ Q were nonzero; let q1 = r1
s1

and
q2 = r2

s2
. Let z1 = r2s1 and z2 = −r1s2. Then

z1q1 + z2q2 = r2s1
r1

s1

− r1s2
r2

s2

= r2r1 − r1r2 = 0.

19
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Figure 3.1: Z2 = Z⊕ Z is the free group of rank 2.

(c) rank
(

Z/n
)

= 0.

To see this, note that n ·a = 0 for any a ∈ Z/n. Thus, even a set like {a}, containing only
one element, is not Z-linearly independent.

(d) If A is any finite abelian group, then rank (A) = 0.

To see this, suppose |A| = n. Then n · a = 0 for any a ∈ A. Thus, even a set like {a},
containing only one element, is not Z-linearly independent.

(e) rank (R,+) =∞.

We need to construct an infinite, Z-linearly independent subset {r1, r2, r3, . . .} ⊂ R. This
is Exercise 10 .

3.2 Free Groups and Generators

Prerequisites: §3.1, §4.1

Let R ∈ N. The free abelian group of rank R is the group

ZR = {(z1, z2, . . . , zR) ; z1, z2, . . . , zR ∈ Z}, (with componentwise addition)

More generally, any abelian group is called free if it is isomorphic to ZR.

Lemma 22 rank
(

ZR
)

= R. Furthermore, if B < ZR is any subgroup, then rank (B) ≤ R.
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Proof: I claim rank
(

ZR
)

≥ R. To see this, let a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0), . . . , aR =
(0, 0, . . . , 0, 1). Then a1, . . . , aR are Z-linearly independent (Exercise 11).

Claim 1: If B < ZR, then rank (B) ≤ R.

Proof: Suppose b1,b2, . . . ,bR,bR+1 ∈ B ⊂ ZR. Think of ZR as a subset of RR. Then any
set ofR+1 vectors cannot be R-linearly independent, so there are numbers q1, . . . , qR+1 such
that q1b1+. . .+qR+1bR+1 = 0. Since b1, . . . ,bR+1 have integer coefficients, we can assume
that q1, . . . , qR+1 are rational numbers; say qr = pr

mr
for all r. Now, let M = m1m2 . . .mR,

and let zr = M · qr = m1m2 . . .mr−1 pr mr+1 . . .mR. Then z1, . . . , zR+1 are integers, and
z1b1 + . . .+ zR+1bR+1 = M · (q1b1 + . . .+ qR+1bR+1) = M · 0 = 0. . 2 [Claim 1]

Setting B = ZR in Claim 1 tells us that rank
(

ZR
)

≤ R. Thus, rank
(

ZR
)

= R. 2

Lemma 23 Let A be any abelian group. Then rank
(

ZR ⊕A
)

= R + rank (A).

Proof: Exercise 12 2

Example 24: rank
(

Z5 ⊕ Z/16 ⊕ Z/7
)

= rank (Z5) + rank
(

Z/16 ⊕ Z/7
)

= 5 + 0 = 5.

Lemma 25 Let A and B be free abelian groups. Then:

(a) A⊕ B is also a free abelian group.

(b) rank (A⊕ B) = rank (A) + rank (B).

Proof: Suppose rank (A) = R and rank (B) = S. Thus, A ∼= ZR, and B ∼= ZS. Thus,
A⊕ B ∼= ZR ⊕ ZS = ZR+S. 2

Example 26: Z3 ⊕ Z5 = Z8.

If (A,+) is an (additive) abelian group, and g1,g2, . . . ,gR ∈ A, then we say that A is
generated by g1, . . . ,gR if, for any a ∈ A, we can find integers z1, z2, . . . , zR ∈ Z so that

a = z1g1 + z2g2 + . . .+ zRgR. (3.1)

In this case, we write “A = 〈g1,g2, . . . ,gR〉”, or, inspired by eqn. (3.1), we write:

A = Zg1 + Zg2 + . . .+ ZgR

If A has a finite generating set, we say that A is finitely generated.
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Proposition 27 Let A be an abelian group, and let g1,g2, . . . ,gR ∈ A. The following are

equivalent:

(a) A = Zg1 + Zg2 + . . .+ ZgR, and g1,g2, . . . ,gR are Z-linearly independent

(b) A = Zg1 ⊕ Zg2 ⊕ . . .⊕ ZgR (where Zgr is the cyclic subgroup generated by gr).

(c) For any a ∈ A, there are unique integers z1, z2, . . . , zR ∈ Z so that
a = z1g1 + z2g2 + . . .+ zRgR.

(d) A is isomorphic to ZR, via the mapping φ : ZR−→A defined:
φ(z1, z2, . . . , zR) = z1g1 + z2g2 + . . .+ zRgR

Proof: (Exercise 13) 2

If the conditions of Proposition 27 are satisfied, we say that A is the free abelian group
generated by g1,g2, . . . ,gR, and we call {g1,g2, . . . ,gR} a basis for A.

3.3 Universal Properties of Free Abelian Groups

Prerequisites: §3.2

Free abelian groups are called ‘free’ because they are the most ‘structureless’ of all abelian
groups. It is thus very easy to construct epimorphisms from free abelian groups into any other
abelian group. This endows the free groups with certain ‘universal’ properties....

Proposition 28 Universal Mapping Property of Free Abelian Groups

Let A be an abelian group, and let g1,g2, . . . ,gR ∈ A. Define the function φ : ZR−→A by
φ(z1, z2, . . . , zR) = z1g1 + z2g2 + . . .+ zRgR. Then:

(a) φ is always a homomorphism (regardless of the choice of g1, . . . ,gR).

(b) Every homomorphism from ZR into A has this form.

(c) If g1,g2, . . . ,gR generate A, then φ is an epimorphism.

Proof: (Exercise 14) 2

Example 29:

(a) Let A = Z/n, and recall that Z is the free abelian group of rank 1. Define φ : Z−→Z/n
by φ(z) = z · 1̄ = z. Then φ is an epimorphism.
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(b) Let A be any abelian group and let a ∈ A be any element. Define φ : Z−→A by
φ(z) = z · a. Then φ is a homomorphism, whose image is the cyclic subgroup 〈a〉.

(c) Let A = Z/5 ⊕ Z/7, and define φ : Z2−→A by φ(z1, z2) = (z1 · [1]5, z2 · [1]7) =
([z1]5, [z2]7) (where [n]5 is the congruence class of n, mod 5, etc.) Then φ is an epi-
morphism.

Corollary 30 Universal Covering Property of Free Abelian Groups

Any finitely generated abelian group is a quotient of a (finitely generated) free abelian group.

Proof: (Exercise 15) 2

This is called the ‘covering’ property because any abelian group can be ‘covered’ by the
projection of some free abelian group. Thus, to prove some result about all abelian groups, it
is often sufficient to prove the result only for free abelian groups.

3.4 (∗) Homological Properties of Free Abelian Groups

Prerequisites: §3.3, Homomorphism Groups

The next two properties are not important to us at present, but arise frequently in homo-
logical algebra.

Corollary 31 Projective Property of Free Abelian Groups

Suppose A and B are abelian groups, and there are homomorphisms φ : ZR−→A and
β : B−→A. Then there is a homomorphism ψ : ZR−→B so that β ◦ ψ = φ.

ZR B

φ
β

A

HHHHHHHHHHHj ?
=====⇒

ZR B

φ
β

A

-ψ

HHHHHHHHHHHj ?

In other words, given any diagram like the one on the left, we can always ‘complete’ it to get
a commuting diagram like the one on the right.

Proof: Proposition 28(c) says we can find some elements a1, . . . , aR ∈ A so that φ has the
form: φ(z1, . . . , zR) = z1a1 + . . . + zRaR. Now, β : B−→A is a surjection, so for each r,
find some br ∈ B with β(br) = ar. Now, define the map ψ : ZR−→B by ψ(z1, . . . , zR) =
z1b1 + . . . + zRbR. Proposition 28(a) says ψ is a homomorphism. To see that β ◦ ψ = φ,
observe that β ◦ψ(z1, . . . , zR) = β(z1b1 + . . .+zRbR) = z1β(b1)+ . . .+zRβ(bR) =
z1a1 + . . .+ zRaR = φ(z1, . . . , zR). 2
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Proposition 32 Adjoint Property

Let A be an abelian group, and let Hom
(

ZR,A
)

be the group of all homomorphisms from
ZR into A. Then Hom

(

ZR,A
)

is isomorphic to AR, via the map

Φ : AR−→Hom
(

ZR,A
)

sending (a1, . . . , aR) to the morphism α : ZR−→A such that α(z1, . . . , zR) = z1a1 + . . .+ zRaR.

Proof: Φ is a homomorphism: Let a = (a1, . . . , aR) ∈ AR and b = (b1, . . . ,bR) ∈ AR.
Let α = Φ(a) and β = Φ(b). Thus, α, β : ZR−→A are homomomorphisms, such that
α(z1, . . . , zR) = z1a1 + . . .+ zRaR, and β(z1, . . . , zR) = z1b1 + . . .+ zRbR. We want to show
that Φ(a+b) = α+β. But a+b = (a1 +b1, . . . , aR+bR), so Φ(a+b) is the homomorphism
χ(z1, . . . , zR) = z1(a1 +b1)+. . .+zR(aR+bR) = (z1a1 +. . .+zRaR)+(z1b1 +. . .+zRbR) =
α(z1, . . . , zR) + β(z1, . . . , zR).

Φ is surjective: This is just Proposition 28(b).

Φ is injective: This is Exercise 16 . 2

3.5 Subgroups of Free Abelian Groups

Prerequisites: §3.2

Any subgroup of a free abelian group is also free. Furthermore, there is a ‘common basis’
for both the group and its subgroup...

Proposition 33 Let A be a free abelian group, and let B < A be any subgroup. Then:

(a) B is also a free abelian group, of rank S ≤ R.

(b) There exists a basis {a1, a2, . . . , aR} for A, and numbers m1,m2, . . . ,mS ∈ N, so that,
if bs = msas for all s ∈ [1..S], then {b1,b2, . . . ,bS} is a basis for B.

Example 34:

(a) As shown in Figure 3.2, Let A = Z2, and let B be the subgroup generated by x = (2, 0)
and y = (1, 2). We can see that B = (Zx)⊕ (Zy), so B is a free abelian group. However,
we want to find a ‘common basis’ for A and B.

As shown in Figure 3.3, let a1 = (1, 2) and a2 = (0, 1). Let m1 = 1 and m2 = 4, so
that b1 = m1a1 = (1, 2) and b2 = m2a2 = (0, 4). Then A = (Za1) ⊕ (Za2) and
B = (Zb1)⊕ (Zb2).
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B = (Zx) (Zy) A = Z  Z y=(1,2);x=(2,0);

Figure 3.2: Example 〈34a〉: A = Z ⊕ Z, and B is the subgroup generated by x = (2, 0) and
y = (1, 2).
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a1 = (1,2)   
 a2 = (0,1)

m1=1;    b1 =   a1 = (1,2)   
 m2=4;    b2 = 4a2 = (0,1)

A = (Za1)  (Za2) B = (Zb1)  (Zb2)

Figure 3.3: Example 〈34a〉: A = (Za1)⊕ (Za2), where a1 = (1, 2) and a2 = (0, 1). Let m1 = 1
and m2 = 4, so that b1 = m1a1 = (1, 2) and b2 = m2a2 = (0, 4). Then B = (Zb1)⊕ (Zb2).
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(b) Let A = Z3, and let B = {(5y, 7z, 0) ; y, z ∈ Z}. In this case, R = 3 and S = 2. Define:

a1 = (1, 0, 0) and m1 = 5, so that b1 = (5, 0, 0);
a2 = (0, 1, 0) and m2 = 7, so that b2 = (0, 7, 0);
a3 = (0, 0, 1).

Then {a1, a2, a3} is a basis for A, and {b1,b2} is a basis for B.

Proof of Proposition 33: We will prove (a) by induction on R, and prove (b) by induction
on S. We will use the following fact:

Claim 8: There exists elements a1 ∈ B and b1 ∈ B, and a number m1 ∈ N so that
b1 = m1a1, such that

A = (Za1)⊕ ˜A and B = (Zb1)⊕ ˜B,
where ˜A < A is a subgroup of rank R− 1, and ˜B < ˜A is a subgroup of rank S − 1.

....we will then apply the induction hypotheses to ˜A and ˜B.

Claim 8 will follow from Claims 1 through 7 below. Without loss of generality, suppose
A = ZR (we know that A is always isomorphic to ZR, so this is okay). For all r ∈ [1..R], let
prr : A−→Z be projection into the rth coordinate —ie. prr(z1, . . . , zR) = zr.

Let φ : A−→Z be any group homomorphism. Then φ(B) < Z is a subgroup, so there is some
mφ ∈ Z such that φ(B) = mφZ. Define:

M = {mφ ; φ : A−→Z any homomorphism}.
Claim 1: M 6= {0}.

Proof: We must show that there is some homomorphism φ : A−→Z so that φ(B) 6= {0}.
Recall that A = ZR, and prr : A−→Z is projection onto the rth coordinate. Given any
a ∈ A, there must be some r ∈ [1..R] so that prr(a) 6= 0 —otherwise a = (0, 0, . . . , 0). In
particular, for any b ∈ B, there is some r ∈ [1..R] so that prr(b) 6= 0. Thus, prr(B) 6= {0}.
2 [Claim 1]

Now, let m1 be the minimal nonzero element in M. Let φ1 : A−→Z be a homomorphism
such that m(φ1) = m1, and let b1 ∈ B be an element such that

φ1(b1) = m1. (∗)
Claim 2: Let ψ : A−→Z be any homomorphism. Then m1 divides ψ(b1).

Proof: Let n = ψ(b1), and let d = gcd(m1, n). Thus d = z1m1 + zn for some integers
z1, z ∈ Z. Define the homomorphism δ : A−→Z by: δ(a) = z1φ1(a) + zψ(a). Then

δ(b1) = z1φ1(b1) + zψ(b1)
by (∗)

z1m1 + zn = d.

Thus, d ∈ δ(B), so mδ must divide d, so mδ ≤ d. But d divides m1, so d ≤ m1. Thus,
mδ ≤ m1. But m1 is the minimal nonzero element in M, so m1 ≤ mδ. Therefore, mδ = m1,
which means d = m1, which means m1 divides n. ...................... 2 [Claim 2]
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Recall that A = ZR, and prr : A−→Z is projection onto the rth coordinate. Claim 2
says m1 divides prr(b1) for all r ∈ [1..R]. In other words, b1 = (b1, b2, . . . , bR), where
b1 = m1a1, b2 = m2a2, . . . , bR = mRaR, for some a1, . . . , aR ∈ Z. Thus, b1 = m1a1, where
a1 = (a1, a2, . . . , aR).

Claim 3: φ1(a1) = 1.

Proof: m1 = φ1(b1) = φ1(m1a1) = m1φ1(a1). Thus, φ(a1) = 1. ...... 2 [Claim 3]

Now, let ˜A = ker(φ1), and let ˜B = K ∩ B.

Claim 4: A = (Za1)⊕ ˜A.

Proof:

Claim 4.1: A = (Za1) + ˜A.

Proof: Let a ∈ A, and let z = φ1(a). Let ã = a− za1. I claim ã ∈ ˜A. To see this, note
that φ1(ã) = φ1(a)− z · φ1(a1)

Clm 3
z − z · 1 = z − z = 0.

Thus, a = za1 + ã ∈ (Za1) + ˜A. ................................ 2 [Claim 4.1]

Claim 4.2: (Za1) ∩ ˜A = {0}.
Proof: Any element of Za1 has the form za1 for some z ∈ Z. If za1 ∈ ˜A, this means that
φ1(za1) = 0. But φ1(za1) = zφ1(a1)

Clm 3
z · 1 = z. Thus, z = 0. 2 [Claim 4.2]

Claims 4.1 and 4.2 imply that A = (Za1)⊕ ˜A. ....................... 2 [Claim 4]

Claim 5: B = (Zb1)⊕ ˜B.

Proof:

Claim 5.1: B = (Zb1) + ˜B.

Proof: Let b ∈ B, and let z = φ1(b). Let ˜b = b− za1. As in Claim 4.1, ˜b ∈ ˜A.
I claim that za1 ∈ Zb. To see this, recall that z = φ1(b) ∈ φ1(B) = m1Z by
definition of m1. Thus, m1 must divide z. Thus, z = ym1 for some y ∈ Z, so that
za1 = ym1a1 = yb1 ∈ Zb.
I also claim that ˜b ∈ ˜B. We know that ˜b ∈ ˜A. Observe that ˜b = b− za1 = b− yb1

is a difference of two elements in B, so ˜b ∈ B also. Thus, ˜b ∈ ˜A ∩ B = ˜B.
Thus, a = yb1 + ˜b ∈ (Zb1) + ˜B. ............................... 2 [Claim 5.1]

Claim 4.1 implies that (Zb1)∩ ˜B = {0}. We conclude that B = (Zb1)⊕ ˜B. 2 [Claim 5]

Claim 6: rank
(

˜A
)

= R− 1.

Proof: Claim 4 says that A = (Za1)⊕ ˜A. Thus,

R = rank (A)
Lem.23

rank (Za1) + rank
(

˜A
)

= 1 + rank
(

˜A
)

.

Thus rank
(

˜A
)

= R− 1. ............................................. 2 [Claim 6]
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Claim 7: rank
(

˜B
)

= S − 1.

Proof: Claim 5 says B = (Zb1)⊕ ˜B. Now proceed exactly as with Claim 6. 2 [Claim 7]

Claim 8 follows from Claims 1 through 7. Now to prove the theorem....

Proof of (a): (by induction on S)

Case (S = 0) Suppose rank (B) = 0. I claim B = {0}. To see this, suppose b ∈ B was
nonzero. Then for any z ∈ Z, zb 6= 0, so the set {b} is linearly independent, hence
rank (B) ≥ 1, a contradiction.

Induction on S: Suppose part (a) is true for all subgroups of A of rank S − 1. Then in

particular, part (a) holds for all ˜B; hence, ˜B is a free abelian group. Since B = (Zb1) ⊕ ˜B,
Lemma 25(a) says that B is also a free abelian group.

We conclude that all subgroups of A are free.

Proof of (b): (by induction on R)

Case (R = 1) In this case, A ∼= Z. Thus, B < Z, so we know there is some m1 ∈ N so
that B = m1Z. So, let a1 = 1 and b1 = m1 · a1 = m1. Then Z is generated by a1, and B is
generated by b1.

Induction on R: Suppose part (b) is true for all subgroups of all free abelian groups

of rank R − 1. Consider ˜A. By Claim 6, we know that rank
(

˜A
)

= R − 1. By part (a)

of the theorem (already proved), we know that ˜A must be a free group. Also, ˜B < ˜A, and

rank
(

˜B
)

= S − 1 (Claim 7) so by induction hypothesis, there is some basis {a2, . . . , aR} for

˜A, and numbers m2, . . . ,mS ∈ N, so that, if bs = msas for all s ∈ [2..S], then {b2, . . . ,bS}
is a basis for ˜B.

Since A = (Za1) ⊕ ˜A (by Claim 4), it follows that {a1, a2, . . . , aR} is a basis for A. Since

B = (Zb1)⊕ ˜B (by Claim 5), it follows that {b1,b2, . . . ,bS} is a basis for B. 2



Chapter 4

The Structure Theory of Abelian
Groups

Group structure theory concerns the decomposition of groups into ‘elementary components’.
For example, the Jordan-Hölder theorem says that any group G has a composition series

{e} = N0 �N1 � . . .�NK = G

where the groups Sk = Nk/Nk−1 are simple for all k.
In this section, we will show that any finitely generated abelian group can be written as a

direct sum of cyclic groups.

4.1 Direct Products

Let (A, ?), (B, ∗), and (C, �) be three groups. The direct product of A, B, and C is the group

A× B × C = {(a, b, c) ; a ∈ A, b ∈ B, c ∈ C}

with the multiplication operation:

(a1, b1, c1) · (a2, b2, c2) = (a1 ? a2, b1 ∗ b2, c1 � c2)

We have defined this for three groups, but the same construction works for any number of

groups. The direct product of G1,G2, . . . ,GN is denoted by “G1 × G2 × . . .× GN” or “
N
∏

n=1

Gn”.

Example 35: Suppose A = B = C = (R,+). Then A× B × C = R× R× R = R3 is just
three-dimensional Euclidean space, with the usual vector addition.

Proposition 36
∣

∣

∣G1 × G2 × . . .× GN
∣

∣

∣ = |G1| · |G2| · · · |GN |.

29
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injB

injA prA

prB

B

B

AA A~G
e eA

(a,eB)
(a,b)

(eA,b)

aa

b

B~

eb b

eb

eA

Figure 4.1: The product group G = A× B, with injection and projection maps.

Proof: (Exercise 17) 2

Example 37:
∣

∣

∣Z/3 × Z/5 × Z/7
∣

∣

∣ =
∣

∣Z/3
∣

∣ ·
∣

∣Z/5
∣

∣ ·
∣

∣Z/7
∣

∣ = 3 · 5 · 7 = 75.

Lemma 38 If (A,+), (B,+), and (C,+) are abelian groups, then their product A× B × C
is also abelian.

Proof: (Exercise 18) 2

(This theorem likewise generalizes to a product of any number of groups)
The product of finitely many (additive) abelian groups is usually called a direct sum, and

indicated with the notation “A⊕ B ⊕ C.”

Proposition 39 (Properties of Product Groups)

Let A, B, and C be groups, and let G = A× B × C be their product.

(a) The identity element of G is just (eA , eB , eC).

(b) For any (a, b, c) ∈ G, (a, b, c)−1 = (a−1, b−1, c−1).

(c) Define injection maps:

injA : A−→G by injA(a) = (a, eB , eC) for all a ∈ A;

injB : A−→G by injB(b) = (eA , b, eC) for all b ∈ B;

and injA : A−→G by injC(c) = (eA , eB , c) for all c ∈ C

Then injA, injB, and injC are monomorphisms.
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(d) Define

˜A = image [injA] = {(a, eB , eC) ; a ∈ A} ⊂ G;

˜B = image [injB] = {(eA , b, eC) ; b ∈ B} ⊂ G;

and ˜C = image [injC] = {(eA , eB , c) ; c ∈ B} ⊂ G

Then ˜A, ˜B, and ˜C are normal subgroups of G

(e) ˜A is isomorphic to A (via injA). Likewise, ˜B ∼= B and ˜C ∼= C.

(f) G = ˜A · ˜B · ˜C. In other words, for any g ∈ G, there are elements ã ∈ ˜A, ˜b ∈ ˜B, and

c̃ ∈ ˜C so that g = ã ·˜b · c̃.

(g) The elements of ˜A, ˜B, and ˜C commute with each other. In other words, for any ã ∈ ˜A,
˜b ∈ ˜B, and c̃ ∈ ˜C,

ã ·˜b = ˜b · ã, ã · c̃ = c̃ · ã, and ˜b · c̃ = c̃ ·˜b,

(h) ˜A ∩ ˜B = {e}, ˜A ∩ ˜C = {e}, and ˜B ∩ ˜C = {e}.

(i) Define projection maps:

prA : G−→A by prA(a, b, c) = a;

prB : G−→B by prB(a, b, c) = b;

and prC : G−→C by prC(a, b, c) = c

Then prA, prB, and prC are epimorphisms.

(j) prA ◦ injA = IdA, prB ◦ injB = IdB, and prC ◦ injC = IdC.

Proof: (Exercise 19) 2

We have stated Proposition 39 for a product of three groups for the sake of simplicity, but
the obvious generalization holds for any number of groups. The conditions of this propositon
actually characterize direct products, as follows:

Proposition 40 Let G be a group, with subgroups A,B < G, such that G = A · B. The

following are equivalent:

(a) G is isomorphic to A× B, via the mapping:

φ : A× B 3 (a, b) 7→ a · b ∈ G
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(b) A ∩ B = {e}, and for every a ∈ A and b ∈ B, ab = ba.

(c) A ∩ B = {e}, and A� G and B � G.

Proof: The assertions (a)=⇒(b) and (a)=⇒(c) follow from Proposition 39(d,g,h).

(b)=⇒(a) We must show φ is a homomorphism and bijective.

φ is a homomorphism: φ
(

(a1, b1) · (a2, b2)
)

(DP)
φ
(

(a1a2), (b1b2)
)

(Dφ)
(a1a2)·(b1b2)

(C)
(a1b1)·

(a2b2)
(Dφ)

φ(a1, b1)·φ(a2, b2). Here, equalities (Dφ) are by definition of φ; (DP) is by definition

of the product group, and (C) is because (b) says a2 and b1 commute.

φ is surjective: By hypothesis, for any g ∈ G we can find a ∈ A and b ∈ B so that g = a · b.
But then g = φ(a, b).

φ is injective: We’ll show ker(φ) = {e}. Suppose φ(a, b) = e. Thus, a · b = e. Thus,
b = a−1, so b ∈ A. Thus, b ∈ A ∩ B, so b = e. Thus, a = e. Thus, (a, b) = (e, e).

(c)=⇒(b) Let a ∈ A and b ∈ B. Then:

A� G, so b a−1 b−1 ∈ A, B � G, so a b a−1 ∈ B,
thus, a b a−1 b−1 ∈ A. thus, a b a−1 b−1 ∈ B;

Thus, aba−1b−1 ∈ A∩B = {e}, so we conclude that aba−1b−1 = e. Thus, ab = (a−1b−1)
−1

=
(b−1)

−1
(a−1)

−1
= ba. 2

When the conditions of Proposition 41 are satisfied, we say that G is an internal direct
product of A and B. We then ‘abuse notation’ by writing, ‘G = A × B’. In terms of the
notation of Proposition 39, we are implicitly identifying A with ˜A and B with ˜B.

If G is abelian, then the conditions in parts (b) and (c) of Proposition 41 become trivial...

Corollary 41 (Interpretation for Abelian Groups)

Let (G,+) be an (additive) abelian group, with subgroups A,B < G. Then the following
are equivalent:

(a) A ∩ B = {0}, and G = A + B (that is, for any g ∈ G there are a ∈ A and b ∈ B so
that g = a+ b).

(b) G ∼= A× B, via the mapping φ : A× B 3 (a, b) 7→ (a+ b) ∈ G. 2

In the abelian cas, we say that G is an internal direct sum of A and B. We again abuse
notation by writing, ‘G = A⊕ B’.
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4.2 The Chinese Remainder Theorem

Prerequisites: §4.1

According to ancient legend from the War of the Three Kingdoms1,

The redoubtable Shu general Zhu Geliang wanted to rapidly count his troops before
entering a great battle against the Wei. He estimated that there were less than 15000
troops, and 15000 < 17017 = 7 × 11 × 13 × 17. So, first he had the troops line
up in rows of 7, and found that there were 6 left over. Next, he lined them up in
rows of 11 each, and found there were 7 left over. Next, in rows of 13, there were
5 left over. Finally, in rows of 17, there were 2 left over. He concluded that there
were exactly 14384 troops.

Theorem 42 (Chinese Remainder Theorem)

(a) Let n1, n2, . . . , nK ∈ N be any collection of pairwise relatively prime numbers (ie.
gcd(nj, nk) = 1 whenever j 6= k), and let n = n1 · n2 · · ·nK . Then

Z/n ∼= Z/n1 ⊕ Z/n2 ⊕ . . .⊕ Z/nk .

(b) To be specific, define φ : Z/n−→Z/n1 ⊕ Z/n2 ⊕ . . .⊕ Z/nk by:

φ ([z]n) = ([z]n1 , [z]n2 , . . . [z]nK ) ,

(where [z]n is the congruence class of z, mod n, etc.). Then φ is an isomorphism.

(c) In particular, suppose n ∈ N has prime factorization n = pν1
1 · pν2

2 · · · p
νK
K . Then

Z/n ∼= Z/(pν11 ) ⊕ Z/(pν22 ) ⊕ . . .⊕ Z/(pνKK )

Proof: (c) is a special case of (a) which follows from (b), which is Exercise 20 . 2

Example 43:

(a) 12 = 4 × 3 and 4 is relatively prime to 3. Therefore, Z/12
∼= Z/4 ⊕ Z/3. (Figure 4.2).

Part (b) provides a specific isomorphism φ : Z/12−→Z/4 ⊕ Z/3, given by:

φ ([z]12) = ([z]4, [z]3) .

For example, φ ([5]12) ([5]4, [5]3) = ([1]14, [2]3).

1Actually, I made this up. But Zhu Geliang (C.E. 181-234) was a famously brilliant Shu military leader,
inventor, and mathematician.
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Figure 4.2: Example 〈43a〉.

(b) 210 = 14× 15, and 14 is relatively prime to 15. Thus, part (a) of the Chinese Remainder
Theorem says that Z/210

∼= Z/14 ⊕ Z/15. Part (b) provides a specific isomorphism φ :
Z/210−→Z/14 ⊕ Z/15, given by: φ ([z]210) = ([z]14, [z]15).

Part (c) of the Chinese Remainder Theorem says that any finite cyclic group can be written
as a direct sum of prime power cyclic groups. This is a special case of the Fundamental Theorem
of Finitely Generated Abelian Groups, which we will see in §4.3.

Example 44:

(a) 12 = 4× 3 = 22 × 3. Therefore, Z/12
∼= Z/4 ⊕ Z/3.

(b) 210 = 2× 3× 5× 7. Therefore, Z/210
∼= Z/2 ⊕ Z/3 ⊕ Z/5 ⊕ Z/7.

(c) 720 = 16× 9× 5 = 24 × 32 × 5. Therefore, Z/720
∼= Z/16 ⊕ Z/9 ⊕ Z/5.

Important: The Chinese Remainder Theorem does not say that Z/nm ∼= Z/n ⊕ Z/m when
n and m are not relatively prime. For example, although 12 = 2 × 6, it is not true that
Z/12 = Z/2 ⊕ Z/6. Likewise, it is not true that Z/8 = Z/2 ⊕ Z/2 ⊕ Z/2.

The story of Zhu Geliang comes from the following application of Theorem 42(b):

Corollary 45 Let n1, n2, . . . , nK ∈ N be pairwise relatively prime and let n = n1 · n2 · · ·nK .

Given any numbers z1 ∈ [0..n1), z2 ∈ [0..n2), . . . , zK ∈ [0..nK), there is a unique z ∈ [0..n)
such that z ≡ z1 (mod n1), z ≡ z2 (mod n2), . . . , z ≡ zK (mod nK). 2
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Example 46: In the story of Zhu Geliang, N = 17017 = 7× 11× 13× 17, z1 = 6, z2 = 7,
z3 = 5, and z4 = 2. Thus, Zhu knows there is a unique z ∈ [0...17016] so that

z ≡ 6 (mod 7), z ≡ 7 (mod 11), z ≡ 5 (mod 13), and z ≡ 2 (mod 17).

To be precise, z = 14384.

In Example 〈46〉, how does Zhu Geliang know that z = 14384? The Chinese Remainder
Theorem states that the solution z exists, but it does not say how to compute it. To compute
z, we need to invert the isomorphism φ in Theorem 42(b).

Proposition 47 Inversion Formula

Let N = n1 · n2 · · ·nK as in Theorem 42. Define:

a1 = N/n1 = n2 · n3 · . . . · nK and b1 = a−1
1 (mod n1)

a2 = N/n2 = n1 · n3 · . . . · nK and b2 = a−1
2 (mod n2)

...
aK = N/nK = n1 · n2 · . . . · nK−1 and bK = a−1

K (mod nK)

(By this, I mean that a1b1 ≡ 1 (mod n1), a2b2 ≡ 1 (mod n2), etc.)
Now, define e1 = a1b1, e2 = a2b2, . . . , eK = aKbK . Finally, let Now define z = z1e1 +

z2e2 + . . . zKeK . Then z ≡ z1 (mod n1), z ≡ z2 (mod n2), . . . , z ≡ zK (mod nK).

Proof: By construction:

e1 ≡ 1 (mod n1); e1 ≡ 0 (mod n2) e1 ≡ 0 (mod n3) . . . e1 ≡ 0 (mod nK)
e2 ≡ 0 (mod n1); e2 ≡ 1 (mod n2) e2 ≡ 0 (mod n3) . . . e2 ≡ 0 (mod nK)
e3 ≡ 0 (mod n1); e3 ≡ 0 (mod n2) e3 ≡ 1 (mod n3) . . . e3 ≡ 0 (mod nK)

...
...

...
. . .

...
eK ≡ 0 (mod n1); eK ≡ 0 (mod n2) eK ≡ 0 (mod n3) . . . eK ≡ 1 (mod nK)

Thus,

z1e1 + z2e2 + . . . zKeK ≡ z1 · 1 + z2 · 0 + . . . + zK · 0 ≡ z1 (mod n1)
z1e1 + z2e2 + . . . zKeK ≡ z1 · 0 + z2 · 1 + . . . + zK · 0 ≡ z1 (mod n2)

...
z1e1 + z2e2 + . . . zKeK ≡ z1 · 0 + z2 · 0 + . . . + zK · 1 ≡ z1 (mod nK)

2

The Chinese Remainder Theorem is really a theorem about abelian groups2, but it has the
following partial generalization to nonabelian groups:

2Later we will also see versions of it for rings and for modules.
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Proposition 48 Let G be a (possibly nonabelian) group, with |G| = N = n1 ·n2 · · ·nK , where

n1, n2, . . . , nK are pairwise relatively prime. Suppose there are normal subgroupsN1,N2, . . . ,NK�

G so that |Nk| = nk. Then G ∼= N1 ×N2 × . . .×NK .

Proof: (by induction)

Base Case (K = 2) We will apply Proposition 41(c).

Claim 1: N1 ∩N2 = {e}.

Proof: If g ∈ N1, then |g| must divide |N1| = n1 Likewise, if g ∈ N2, then |g| divides n2.
Thus, |g| divides gcd(n1, n2) = 1. Thus, |g| = 1, so g = e. .............. 2 [Claim 1]

Claim 2: G = N1 · N2.

Proof: Clearly, N1 · N2 is a subset G. We claim that N1 · N2 has the same cardinality as
G. To see this, observe that

∣

∣

∣N1 · N2

∣

∣

∣

(∗)

|N1| · |N2|
|N1 ∩N2

Claim 1

n1 · n2

1
= n = |G|.

where (∗) follows from Prop 13, §3.2, p.94 in Dummit & Foote. ........ 2 [Claim 2]

Now combine Claims 1 and 2 with Proposition 41(c).

Induction: Observe that, since N2,N3, . . . ,NK � G, the product M = N2 · N3 · · · NK is
a subgroup of G. By induction hypothesis,

M ∼= N2 ×N3 × . . .×NK . (4.1)

Now, let m = |M| = n2 · n3 · · ·nK . Then m is relatively prime to n1 (because each of n2,
n3, . . . , nK is relatively prime to n1). Thus, by applying the Base Case (with M playing
the role of N2) we have: G ∼= N1 ×M

eqn.(4.1)
N1 ×N2 ×N3 × . . .×NK . 2

Corollary 49 Let G be a (possibly nonabelian) group. Suppose |G| = n, and let n have

prime factorization: n = pν1
1 p

ν2
2 . . . pνKK . Suppose there are subgroups3 P1,P2, . . . ,PK < G so

that |Pk| = pνkk .
If P1, . . . ,PK are normal subgroups of G, then G ∼= P1 × P2 × . . .× PK .

Proof: Apply Proposition 48, with n1 = pν1
1 , n2 = pν2

2 , . . . , nK = pνKK 2

3These are called Sylow subgroups.
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Another proof of part (c) of the Chinese Remainder Theorem: Let G = Z/N , and
for all k ∈ [1..K], let mk = n/pνkk . Let mk ∈ G be the associated congruence class.

Claim 1: |mk| = pνkk .

Proof: (Exercise 21) ................................................ 2 [Claim 1]

Let Pk = 〈mk〉 be the subgroup generated by mk. It follows from Claim 1 that |Pk| = pνkk .
Thus, Corollary 49 says that G = P1 ⊕ P2 ⊕ . . .⊕ PK . 2

4.3 The Fundamental Theorem of Finitely Generated

Abelian Groups

Prerequisites: §4.2, §3.5

Theorem 50 Let A be a finitely generated abelian group. Then there are unqiue prime

powers pα1
1 , p

α2
2 , . . . , p

αN
n (where p1, p2, . . . , pN are prime numbers, not necessarily distinct, and

α1, . . . , αN are natural numbers), and a unique integer R ≥ 0 so that

A ∼= ZR ⊕ Z/(pα1
1 ) ⊕ Z/(pα2

2 ) ⊕ . . .⊕ Z/(pαNN ).

Example 51: The following groups typify the Fundamental Theorem:

Z15; Z/2⊕Z/2⊕Z/2; Z/2⊕Z/4⊕Z/8; Z5⊕Z/2⊕Z/4⊕Z/3⊕Z/81⊕Z/25⊕Z/49⊕Z/17.

On the other hand, the abelian group (Q,+) is not finitely generated, and therefore does not
admit a decomposition of this kind. Instead,

Q = Q2 +Q3 +Q5 +Q7 +Q11 +Q13 + . . .

In other words, Q is a sum of the p-adic rational numbers, for all prime p. Note that this
sum is not direct, because Q2 ∩Q3 ∩Q5 ∩Q7 ∩Q11 ∩Q13 ∩ . . . = Z.

To obtain something more like a direct sum, let ˜Q = Q/Z. If you think of the unit circle as

R/Z, then you can imagine ˜Q as the subgroup of ‘rational angles’ on the circle. Likewise, let
˜Qp = Qp/Z for all prime p. Then

˜Q = ˜Q2 ⊕ ˜Q3 ⊕ ˜Q5 ⊕ ˜Q7 ⊕ ˜Q11 ⊕ ˜Q13 ⊕ . . .

and Q = ˜Qo Z is a semidirect product of ˜Q with Z.
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Proof of the Fundamental Theorem: By the Universal Covering Property (Corollary 30 on
page 23), find a free abelian group F and an epimorphism φ : F−→A. Let K = ker(φ); thus,

A ∼= F/K. (4.2)

By Proposition 33 on page 24, K is also a free abelian group, and there is a basis {a1, a2, . . . , aR}
for F , and numbers m1,m2, . . . ,mS ∈ N so that {(m1a1), (m2a2), . . . , (mSaS)} is a basis
for K.

In other words, F = Za1 ⊕ Za2 ⊕ . . .⊕ ZaS ⊕ ZaS+1 ⊕ . . .⊕ ZaR,
and K = Zm1a1 ⊕ Zm2a2 ⊕ . . .⊕ ZmSaS ⊕ {0} ⊕ . . .⊕ {0}.

Thus, F/K ∼= Z/m1Z ⊕ Z/m2Z ⊕ . . .⊕ Z/mSZ ⊕ Z ⊕ . . .⊕ Z
∼= Z/m1 ⊕ Z/m2 ⊕ . . .⊕ Z/mS ⊕ Z ⊕ . . .⊕ Z

In other words, if R′ = R− S, then

F/K ∼= Z/m1 ⊕ Z/m2 ⊕ . . .⊕ Z/mS ⊕ ZR
′
. (4.3)

Now, suppose that m1 has prime factorization m1 = pα1
1 · pα2

2 · · · p
αi
i . Then the part (c) of the

Chinese Remainder Theorem (Theorem 42 on page 33) says

Z/m1
∼= Z/(pα1

1 ) ⊕ Z/(pα2
2 ) ⊕ . . .⊕ Z/(pαii ).

Likewise, if m2 = p
αi+1

i+1 · p
αi+2

i+2 · · · p
αj
j . then Z/m1

∼= Z/(pαi+1
i+1 ) ⊕ Z/(pαi+2

i+2 ) ⊕ . . . ⊕ Z
/(p

αj
j ).

Proceeding this way, suppose that m1, . . . ,mS collectively have prime factorizations:

m1 = pα1
1 · pα2

2 · · · p
αi
i

m2 = p
αi+1

i+1 · p
αi+2

i+2 · · · p
αj
j

...
mS = pαkk · p

αk+1

k+1 · · · p
αN
N

(where the prime number sets {p1, . . . , pi},
{pi+1, . . . , pj}, . . . . . . , {pk, . . . , pN} are not
necessarily disjoint)

Then:

Z/m1 ⊕ Z/m2 ⊕ . . .⊕ Z/mS =
(

Z/(pα1
1 ) ⊕ . . .⊕ Z/(pαii )

)

⊕
(

Z/(pαi+1
i+1 ) ⊕ . . .⊕ Z/(pαjj )

)

⊕ . . .

. . .⊕
(

Z/(pαkk ) ⊕ . . .⊕ Z/(pαNN )

)

. (4.4)

Now, combine equations (4.2,4.3,4.4) to conclude: A ∼= Z/(pα1
1 )⊕ . . .⊕Z/(pαNN )⊕Z

R′ . 2
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Example: To illustrate the reasoning of the proof, suppose that F = Z3, so that R = 3.
Suppose S = 2, and that

a1 = (1, 0, 0) and m1 = 60, so that m1a1 = (60, 0, 0);
a2 = (0, 1, 0) and m2 = 80, so that m2a2 = (0, 80, 0);
a3 = (0, 0, 1).

Thus, K = {(60z1, 80z2, 0) ; z1, z2 ∈ Z} = (60Z)⊕ (80Z)⊕ {0}. Thus,

A ∼= F/K =
Z ⊕ Z ⊕ Z

(60Z)⊕ (80Z)⊕ {0}
∼= Z/60 ⊕ Z/80 ⊕ Z.

Now, we apply the Chinese Remainder Theorem:

60 = 4× 3× 5 = 22 × 3× 5, so Z/60
∼= Z/3 ⊕ Z/4 ⊕ Z/5; ie. {p1, p2, p3} = {2, 3, 5}.

80 = 16× 5 = 24 × 5, so Z/80
∼= Z/16 ⊕ Z/5; ie. {p4, p5} = {2, 5}.

Observe that the set {2, 3, 5} is not disjoint from the set {2, 5}, but we can still proceed to
conclude that:

A ∼= Z ⊕ Z/3 ⊕ Z/4 ⊕ Z/5 ⊕ Z/16 ⊕ Z/5.
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Chapter 5

The Structure Theory of Nonabelian
Groups

5.1 Three Examples

Prerequisites: §1.4

Example (A) The arithmetic quotient equation

6

3
= 2 (5.1)

is equivalent to the factorization:

6 = 2 · 3. (5.2)

Can we factor the numbers 2 and 3 any further? No, because they are prime. The equation
6 = 2 × 3 is a prime factorization of 6. Prime numbers are the ‘elementary components’ of
number theory: any number can be written in a unique way as a product of prime numbers.

The idea of group structure theory is to ‘factor’ groups into ‘elementary components’ in a
similar fashion.

Example (B) Consider the cyclic group Z/6 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄}, and the subgroup A =
{0̄, 2̄, 4̄}. It is easy to check that A� Z/6, and that

Z/6
A

∼= Z/2. (5.3)

Observe that A ∼= Z/3. Thus, we suspect

Z/6 ∼= Z/3 × Z/2, (5.4)

41
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and indeed, this is true. To see this, define φ : Z/3×Z/2 −→ Z/6 by φ ([n]3, [m]2) = 2n+ 3m.
(Exercise 22 Check that φ is an isomorphism. Here, [n]3 is the mod-3 congruence class of n, etc.)

Thus, the quotient equation (5.3) entails a factorization (5.4) of the group Z/6, just as the
quotient equation (5.1) entailed a factorization (5.2) of the integer 6.

Can we break down Z/3 any further? No, because Z/3 contains no normal subgroups, so it
cannot be ‘factored’ in this way. Likewise, Z/2 contains no normal subgroups. Thus, Z/3 and
Z/2 are analogous to prime numbers. We say that Z/3 and Z/2 are simple.

Example (C) Now, consider the symmetric group S3 =
{

e, (12), (13), (23), (123), (132)
}

,

and the subgroup A3 =
{

e, (123), (132)
}

. We saw in Example 〈8d〉 (page 7) that A3 � S3,

and we saw in Example 〈13c〉 (page 11) that

S3

A3

∼= Z/2. (5.5)

Observe that A3 =
{

e, (123), (132)
}

is isomorphic to Z/3. Thus, we suspect S3
∼= Z/3×Z/2.

However, this is false, because Z/3×Z/2 is abelian, but S3 is not abelian. So if S3 is a ‘product’
of Z/3 and Z/2, it is only a product in a metaphorical sense1. but we can still write:

S3
∼= Z/3 o Z/2, (5.6)

as long as we interpret the symbol “o” in the appropriate way. Thus, the quotient equation
(5.5) entails a factorization (5.6) of the group S3, just as the quotient equation (5.3) entailed a
factorization (5.4) of the group Z/6.

Examples (B) and (C) show an important difference between factoring groups and factoring
numbers. Any number with prime factorization “2× 3” must be equal to 6. But two different
groups can both ‘factor’ into the same elementary components, without being the same. The
groups Z/6 and S3 both factor into elementary components Z/3 and Z/3, but Z/6 6∼= S3.

5.2 Simple Groups

Prerequisites: §1.4, §1.2 Recommended: §5.1

A group G is simple if it has no nontrivial proper normal subgroups. For example, Z/3 is
simple (because the only proper subgroup of Z/3 is {0}, which is trivial). Simple groups are
the ‘elementary components’ of group theory, and are analogous to prime numbers. Indeed, we
have the following:

Proposition 52 For any n ∈ N,
(

Z/n is simple
)

⇐⇒
(

n is prime
)

.

1In fact, S3 is actually a semidirect product of Z/3 and Z/2.
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Proof: ‘⇐=’ Let A be any subgroup of Z/n. Then Lagrange’s Theorem (Theorem 7 on
page 6) says |A| divides |Z/n| = n. But n is prime, so either |A| = 1 (in which case A = {0̄})
or |A| = n (in which case A = Z/n).

Thus, A has no nontrivial proper subgroups —in particular, A has no nontrivial proper
normal subgroups. Hence, A is simple.

‘=⇒’ Suppose n was not prime; then n = k·m for some numbers k andm, with 1 < k,m < n.

Thus, the subgroup 〈m〉 =
{

0̄, m, 2m, . . . , (k − 1)m
}

is a subgroup with k elements, so

it is a nontrivial subgroup of Z/n. But Z/n is abelian, so 〈m〉 is automatically a normal
subgroup. Hence, Z/n cannot be simple. 2

In the proof of Proposition 52, we implicitly used the following result:

Lemma 53 Let G be a group. Then:

(a)
(

G has no nontrivial subgroups
)

=⇒
(

G is simple
)

.

(b) If G is abelian, then
(

G has no nontrivial subgroups
)

⇐⇒
(

G is simple
)

.

Proof: Exercise 23 2

Observe that the ‘if and only if’ is not true if G is not abelian. It isn’t obvious, because
we haven’t yet seen any examples of nonabelian simple groups. We will show in §6.3 that the
alternating group AN is simple for all N ≥ 5. Thus, A5 is an example of a simple group with
many nontrivial subgroups.

Lemma 54 Let G be a simple group. If φ : G−→H is any group homomorphism, then either

φ is trivial or φ is a monomorphism.

Proof: Exercise 24 2

5.3 Composition Series; The Hölder program

Prerequisites: §5.2, §2.1

Let G be a group. A normal series is a sequence of subgroups:

N1 � N2 � N3 � . . . � NJ � G.

Note that N1 is normal in N2, but it is not necessarily true that N1 is normal in G. Likewise,
for every j ∈ [1..J), Nj is normal in Nj+1, but not necessarily normal in G.
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N0={e}
N1=X {e} {e} N2=X Y {e}

N3=X Y Z G

S2=N2/N1=Y

S1
=N

1
/N

0
=X

S 3
=N

3/
N 2
=Z

Figure 5.1: Example 〈56a〉

Example 55: Let G = Z/120, and let

N3 = 〈2̄〉 = {0̄, 2̄, 4̄, 6̄, 8̄, . . . , 116, 118};
N2 =

〈

12
〉

= {0̄, 12, 24, 36, 48, 60, 72, 84, 96, 108};
N1 =

〈

24
〉

= {0̄, 24, 48, 72, 96}.

Thus, N1 �N2 �N3 � Z/120.

A composition series is a normal series

{eG} = N0 � N1 � N2 � . . . � NJ = G, (5.7)

such that the quotient groups



























S1 = N1/N0 = N1

S2 = N2/N1

S3 = N3/N2
...

SJ = NJ/NJ−1 = G/NJ−1



























are all simple groups.

We say this series has rank J . The groups S1,S2, . . . ,SJ are called composition factors, and
the set {S1,S2, . . . ,SJ} is called a composition factor set2.

The idea is that G is in some way a ‘product’ of its composition factors:

G = S1 � S2 h S3 i S4 � . . .~ SJ

where ‘�’, ‘h’, ‘i’, etc. represent some ways of combining groups together (eg. direct product,
semidirect product, etc.). Thus, a composition series is for a group what a prime factorization
is for an integer.

Example 56:

2Technically, this is a multiset, because we allow the same element to appear more than once.
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(a) Let X ,Y ,Z be simple groups, and let G = X × Y × Z. As shown in Figure 5.1, define:

N3 = X × Y × Z = {(x, y, c, e) ; x ∈ X , y ∈ Y and z ∈ Z}
N2 = X × Y × {eZ} = {(x, y, eZ ) ; x ∈ X and y ∈ Y}
N1 = X × {eY} × {eZ} =

{

(x, eY , eZ ) ; x ∈ X
}

N0 = {eX } × {eY} × {eZ} = {eG}

Then this is a composition series for G, with composition factors:

S3 = N3/N2
∼= Z;

S2 = N2/N1
∼= Y ;

S1 = N1/N0
∼= X .

(b) Let G = Z/12, and define:

N3 = Z/12 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄ 6̄, 7̄, 8̄, 9̄, 10, 11};
N2 = 〈2̄〉 = {0̄, 2̄, 4̄, 6̄, 8̄, 10};
N1 = 〈4̄〉 = {0̄, 4̄, 8̄};
N0 = {0̄}.

Then this is a composition series for Z/12, with composition factors:

S3 = N3/N2
∼= Z/2;

S2 = N2/N1
∼= Z/2;

S1 = N1/N0
∼= Z/3.

(c) Again, let G = Z/12, but now define:

N3 = Z/12 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄ 6̄, 7̄, 8̄, 9̄, 10, 11};
N2 = 〈3̄〉 = {0̄, 3̄, 6̄, 9̄, };
N1 = 〈6̄〉 = {0̄, 6̄};
N0 = {0̄}.

Then this is another composition series for Z/12, with composition factors:

S3 = N3/N2
∼= Z/3;

S2 = N2/N1
∼= Z/2;

S1 = N1/N0
∼= Z/2.

(d) The normal series in Example 〈55〉 is not a composition series (even if we add terms
N4 = Z/120 and N0 = {0̄}). The reason: S3 = N3/N2

∼= Z/6 is not simple. However, we
can ‘refine’ this normal chain into a composition series by inserting the normal subgroup

N2 1
2

= 〈6̄〉 = {6̄, 12, 18, . . . , 124}.
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Now we have a composition series: {0̄} = N0 �N1 �N2 �N2 1
2

�N3 �N4 = Z/120,

with composition factors:























S4 = N4/N3
∼= Z/2;

S3 = N3/N2 1
2

∼= Z/3;

S2 1
2

= N2 1
2
/N2

∼= Z/2;

S2 = N2/N1
∼= Z/2;

S1 = N1/N0
∼= Z/5.

.

(e) If G is a simple group, then G has a very short composition series: {eG} = N0 �N1 = G,
with one composition factor: S1 = N1/N0

∼= G.

In Examples (56b) and (56c), we constructed two different composition series for Z/12, but
they had the same rank, and yielded the same composition factor set: {Z/2, Z/2, Z/3} (albeit
in a different order). This is reassuring; if a composition series is supposed to be a ‘prime
factorization’ of a group, it would be unfortunate if different series yielded different factors for
the same group. The following theorem says this is true in general.

Theorem 57 (Jordan-Hölder )

Let G be a finite group. Then:

(a) G has a composition series.

(b) Any two composition series for G have the same rank, and yield the same composition
factor set. In other words, if

{eG} = N0 � N1 � N2 � . . . � NJ = G
and {eG} = M0 � M1 � M2 � . . . � MK = G

are two composition series for G, with composition factors

S1 = N1/N0

S2 = N2/N1

S3 = N3/N2
...

SJ = NJ/NJ−1

and

T1 = M1/M0

T2 = M2/M1

T3 = M3/M2
...

TK = MK/MK−1

then actually, J = K, and (up to reordering), {S1,S2, . . . ,SJ} = {T1, T2, . . . , TK}.

Proof: (a) (by complete induction on |G|).
Base Case: (|G| = 2) The only group of order 2 is Z/2, which is simple and therefore has
composition series {0̄} = N0 �N1 = Z/2.

Induction: Suppose that every group of order less than n has a composition series, and let
|G| = n. We claim that G must also have a composition series. This is Exercise 25
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Hint: there are two cases:
{

1. G is simple.
2. G is not simple.

If G is simple, it has a very short composition series. If G is not simple, let N be a maximal normal
subgroup of G. Then |N | < n, so apply the induction hypothesis to N and proceed.

(b) (by induction on J)

Base Case: (J = 2) In this case, we have two composition series

{eG} = N0 � N1 � N2 = G;

and {eG} = M0 � M1 � M2 � . . . � MK = G.

Our goal is to prove that K = 2, and that {S1,S2} = {T1, T2}. Consider the following
diamond:

Claim 1: MK−1N1 = G.

Claim 2: MK−1 ∩N1 = {eG}.
Claim 3: MK−1

∼= S1. Thus, MK−1 is simple.

Claim 4: K = 2, T0
∼= S1, and T1

∼= S0.

Exercise 26 Prove Claim 1 using Claim 14; prove Claim
2 using Claim 15. Prove Claims 3 and 4 using the Diamond

Isomorphism Theorem (Theorem 16 on page 14).
�
�
�
��

@
@
@
@I

�
�
�
��

@
@
@
@I

MK−1 N 1

MK−1 ∩N1

MK−1N1

.

Induction: Suppose that part (b) is true for any group possessing a composition series
of rank J − 1.
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Define ˜G =MK−1 ∩NJ−1.

For all k ∈ [1..K), define ˜Mk =Mk ∩ ˜G.

For all j ∈ [1..J), define ˜Nj = ˜G ∩ Nj.

Claim 5: ˜M1 = {eG} = ˜N1.

Claim 6:
{eG} = ˜N1 � ˜N2 � . . .� ˜NJ−1 = ˜G
and

{eG} = ˜M1 � ˜M2 � . . .� ˜MK−1 = ˜G

are composition series for the group ˜G.

Let the corresponding composition factors be:

˜SJ−1 = ˜NJ−1/ ˜NJ−2

˜SJ−2 = ˜NJ−2/ ˜NJ−3

...
˜S3 = ˜N3/ ˜N2

˜S2 = ˜N2/ ˜N1

and

˜TK−1 = ˜MK−1/˜MK−2

˜TK−2 = ˜MK−2/˜MK−3

...
˜T3 = ˜M3/˜M2

˜T2 = ˜M2/˜M1

Claim 7: J = K, and

{ ˜S2, ˜S3, . . . , ˜SJ−1} = {˜T2, ˜T3, . . . , ˜TK−1}.
Claim 8:
{eG} = ˜N1 � ˜N2 � ˜N3 � . . .� ˜NJ−1 = ˜G �NJ
is a composition series for the group NJ .
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MK−1NJ−1

MK−1 NJ−1

Nj−2

Nj−3

M2 N2

Mk−3

˜Mk−3

˜Nj−2

˜Nj−3

˜N2
˜M2

˜Mk−2

Mk−2
˜G

M1
N1

M1 ∩N1
Define ˜SJ = NJ/˜G

Claim 9: { ˜S2, ˜S3, . . . , ˜SJ−1, ˜SJ} = {S1,S2, . . . ,SJ−2,SJ−1}.

Claim 10: {eG} = ˜M1 � ˜M2 � ˜M3 � . . .� ˜MK−1 = ˜G �MK

is a composition series for the group MK .

Define ˜TK = MK−1/˜G.

Claim 11: {˜T2, ˜T3, . . . , ˜TK−1, ˜TK} = {T1, T2, . . . , TK−2, TK−1}.

Claim 12: MK−1NJ−1 = G.

Claim 13: ˜SJ = TK , and ˜TK = SJ .



5.3. COMPOSITION SERIES; THE HÖLDER PROGRAM 49

The proofs of several of these claims depend upon certain basic facts about normal subgroups.
A maximal normal subgroup of G is a normal subgroup A � G so that there exists no
normal subgroup B � G with A < B.

Claim 14: (a) Nj−1 and Mk−1 are maximal normal subgroups of G.

(b) If N and M are distinct maximal normal subgroups of G, then NM = G.

A minimal normal subgroup of G is a normal subgroup A� G which is also simple —ie.
there exists no nontrivial normal subgroup B �A.

Claim 15: (a) N1 and N1 are minimal normal subgroups of G.

(b) If N and M are distinct minimal normal subgroups of G, then N ∩M = {eG}.
Finally, we’re using the following fact about composition series:

Claim 16: Let {eG} = A1 �A2 � . . .�AR = G be any composition series for G, and let
H < G. For all r ∈ [1..R], let Br = Ar ∩ H. Then {eG} = B1 � B2 � . . . � BR = H is a
composition series for B.

Exercise 27 First prove Claims 14, 15, and 16. Then prove Claim 5 using Claim 14. Prove Claim
12 using Claim 15. Prove Claims 6, 8, and 10 using Claim 16. Prove Claims 7, 9, and 11 using
the induction hypothesis. Prove Claim 13 using the Diamond Isomorphism Theorem (Theorem 16 on
page 14). Now bring all this together to prove the theorem. 2

The Jordan-Hölder theorem means that we can talk about the composition factors of the
group G, without making reference to any specific composition series. For instance, as we saw in
Examples (56b) and (56c), the composition factor set for Z/12 is {Z/2,Z/2,Z/3}. Is this because
the integer 12 has prime factor set {2, 2, 3}? Yes; the same pattern holds for any abelian group...

Proposition 58 Let m ∈ N have prime factorization: m = pµ1

1 p
µ2

2 · · · p
µJ
J (where p1, . . . , pJ

are prime, and µ1, . . . , µJ ∈ N). Then any abelian group of order m has composition factor set

{
µ1

︷ ︸︸ ︷

Z/p1 , . . . ,Z/p1 ,

µ2
︷ ︸︸ ︷

Z/p2 , . . . ,Z/p2 , . . . ,

µJ
︷ ︸︸ ︷

Z/pJ , . . . ,Z/pJ}.

Proof: We will prove this theorem by complete induction on m.

Claim 1: If n = pν1
1 p

ν2
2 · · · p

νJ
J , then the cyclic group Z/n has composition factor set

{
ν1

︷ ︸︸ ︷

Z/p1 , . . . ,Z/p1 ,

ν2
︷ ︸︸ ︷

Z/p2 , . . . ,Z/p2 , . . . ,

νJ
︷ ︸︸ ︷

Z/pJ , . . . ,Z/pJ}.

Proof: Exercise 28 ................................................. 2 [Claim 1]

Claim 2: Let G be a group; let N � G be a normal subgroup, and let Q be a quotient
group. If N has composition factor set {N1,N2, . . . ,NL}, and Q has composition factor set
{Q1,Q2, . . . ,QK}, then G has composition factor set {N1,N2, . . . ,NL,Q1,Q2, . . . ,QK}.
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Proof: Exercise 29 Hint: SupposeQ had composition series: {e} = R0�R1�. . .�RK = Q,
with Rk/Rk−1 = Qk, for all k ∈ [1..K]. Use the Chain Isomorphism Theorem (Theorem 18 on
page 15) to transform this into a normal series

N = ˜R0 � ˜R1 � ˜R2 � . . . � ˜RK = G,

such that ˜Rk/ ˜Rk−1 = Rk/Rk−1 = Qk, for all k ∈ [1..K].
Now suppose N had composition series: {e} = M0 �M1 � . . . �ML = N , such that
M`/M`−1 = N`, for all ` ∈ [1..L]. Conclude that G has composition series:
{e} =M0 �M1 � . . .�ML = N = ˜R0 � ˜R1 � . . .� ˜RK = G. ............ 2 [Claim 2]

Base Case: (m = 2) The only group of order 2 is Z/2; its only composition factor is Z/2.

Induction: Suppose the theorem is true for all abelian groups of order less than m,
and let A be an abelian group of order m. Let a ∈ A be any nontrivial element, and
let N = 〈a〉. Then N is a cyclic subgroup of order n, for some n < m, and Lagrange’s
Theorem (Theorem 7 on page 6) says that n divides m. Thus, n = pν1

1 p
ν2
2 · · · p

νJ
J for some

ν1 ≤ µ1, ν2 ≤ µ1, . . ., νJ ≤ µJ . Thus, Claim 1 says that N has composition factor set
{Z/p1 , . . . ,Z/p1
︸ ︷︷ ︸

ν1

, . . . ,Z/pJ , . . . ,Z/pJ
︸ ︷︷ ︸

νJ

}.

Now, A is abelian, so N is automatically normal in A. Let Q = A/N . Then Q is an abelian
group of order q = m/n = pχ1

1 p
χ2

2 · · · p
χJ
J , where χ1 = µ1 − ν1, . . ., χJ = µJ − νJ .

Thus, Q is an abelian group of order less than m, so the induction hypothesis says that Q has
composition factor set {Z/p1 , . . . ,Z/p1

︸ ︷︷ ︸

χ1

, . . . ,Z/pJ , . . . ,Z/pJ
︸ ︷︷ ︸

χJ

}. Now apply Claim 2 to conclude

that G has composition factor set {Z/p1 , . . . ,Z/p1
︸ ︷︷ ︸

ν1+χ1

, . . . ,Z/pJ , . . . ,Z/pJ
︸ ︷︷ ︸

νJ+χJ

}, as desired. 2

The Hölder Program: The Jordan-Hölder theorem is the starting point of the Hölder pro-
gram, a master strategy to build an ‘atlas’ of all finite groups, in two stages:

1. Construct a complete list of all finite simple groups.

2. Characterize all possible ways that two groups N and Q can be ‘combined’ to create a
larger group, G, such that N � G, and G/N = Q.

Stage 1 of the Hölder program is called the Classification of Finite Simple Groups, and was
a massive, century-long effort which was finally completed in 1980 (see §5.4). If we think of
groups as ‘molecules’, then simple groups are ‘atoms’, and the Classification is analogous to
Mendeleev’s construction of a Periodic Table of Elements.

Stage 2 is called the Extension Problem, and is still not completely solved (see §5.5). If we
think of groups as ‘molecules’, and simple groups as ‘atoms’, then the Extension Problem is
analogous to the entire subject of chemistry.
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Refinement: In Example 〈56d〉 on page 45, we saw that a normal series of Z/120 could
be ‘refined’ into a composition series, by judiciously inserting additional terms in the series.
Another example of this sort of ‘refinement’ is Claim 2 of Proposition 58, which we generalize
as follows:

Proposition 59 Refinement Lemma

Let G be a group, with a normal series: {e} = N0 � N1 � N2 � . . . � NJ = G.
Suppose that :

G1 = N1/N0 has composition series: {e} = M1
0 � M1

1 � M1
2 � . . . � M1

K1
= G1.

G2 = N2/N1 has composition series: {e} = M2
0 � M2

1 � M2
2 � . . . � M2

K2
= G2.

...
...

...
GJ = NJ/NJ−1 has composition series: {e} = MJ

0 � MJ
1 � MJ

2 � . . . � MJ
KJ

= GJ .

Then G has a composition series:

{e} = ˜M1
0 � ˜M1

1 � ˜M1
2 � . . . � ˜M1

K1
= N1 = ˜M2

0 � ˜M2
1 � . . . � ˜M2

K2
= N2

= ˜M3
0 � ˜M3

1 � . . . � ˜M3
K3

= N3 = ˜M4
0 � ˜M4

1 � . . .

. . . � NJ−1 = ˜MJ
0 � ˜MJ

1 � ˜MJ
2 � . . . � ˜MJ

KJ
= NJ = G

such that, for all j ∈ [1..J ] and k ∈ [1..Kj],
(

˜Mk
j/˜Mk

j−1

)

∼=
(

Mk
j/Mk

j−1

)

. Hence,







G1 has composition factor set {S1
1 ,S1

2 , . . . ,S1
K1
}

G2 has composition factor set {S2
1 ,S2

2 , . . . ,S2
K2
}

...
...

...
GJ has composition factor set {SJ1 ,SJ2 , . . . ,SJKJ}





=⇒







G has composition factor set

{S1
1 ,S1

2 , . . . ,S1
K1
,S2

1 ,S2
2 , . . . ,S2

K2
, . . . ,

. . . ,SJ1 ,SJ2 , . . . ,SJKJ}







Proof: Exercise 30 Hint: Generalize the proof of Claim 2 of Proposition 58. For each j ∈ [1..J ],
use the Chain Isomorphism Theorem (Theorem 18 on page 15) to transform the normal series

{e} = Mj
0 � Mj

1 � Mj
2 � . . . � Mj

Kj
= Gj

into a normal series Nj−1 = ˜Mj
0 � ˜Mj

1 � ˜Mj
2 � . . . � ˜Mj

Kj
= Nj. 2

5.4 (∗) The Classification of Finite Simple Groups

Prerequisites: §5.2 Recommended: §5.3

Part 1 of the Hölder program called for a complete list of all finite simple groups, a project
which ultimately spanned one hundred years and generated almost ten thousand pages of
published research. At this point, the Classification is complete, but the details are beyond the
scope of these notes. Instead, we will simply summarize the main results:
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1. There are 18 infinite families of finite simple groups. Each of these families is a collection
of simple groups built from some common ‘template’, indexed by one or more natural
numbers. For example, here are three families of simple groups:

(a) The prime cyclic groups:
{

Z/p ; where p is any prime number
}

. (Proposition 52 on
page 42).

(b) The alternating groups: {AN ; where N ≥ 5}. (see §6.3).

(c) The finite projective groups [1, Thm 8.8.3]:
{

PSLn(F) ; where F is any finite field, and n ≥ 2 (with n ≥ 3 if F = Z/2 or Z/3)
}

,

Here, PSLn(F) = SLn [F]/Z, where SLn [F] is the group of F-valued matrices with
determinant 1, and Z = Z (SLn [F]) = {±Id} is its center.

2. There are also 26 sporadic simple groups, which do not fit into any of these families.

3. The smallest of these sporadic simple groups is the Matthieu group, M11, which has
cardinality 7920.

4. The largest sporadic simple group is called the Monster, and has cardinality approximately
1053. The mathematical ‘footsteps’ the Monster have been discovered in surprisingly
diverse areas of mathematics. The significance of the Monster is not well understood; the
study of its footsteps is sometimes called (Monstrous) Moonshine. [?]

5. Feit-Thompson Theorem: The only simple groups of odd order are the prime cyclic
groups Z/p (where p is prime).

(the proof of the Feit-Thompson is 255 pages long, and occupies an entire volume of
Pacific Journal of Mathematics).

6. Likewise, the only abelian simple groups are the prime cyclic groups.

(This follows easily from Fundamental Theorem of Finitely Generated Abelian Groups; see
§4.3).

7. The smallest nonabelian simple group is the icosahedral group3 A5, (which is also PSL2(Z/5)),
which has order 60 (see §6.3). The next largest nonabelian simple groups have orders 168,
360, 504, 660, 1092, and 2448.

5.5 (∗) The Extension Problem; Short Exact Sequences

Prerequisites: §1.4 Recommended: §5.1

If G is a group, and N � G, and Q = G/N is the quotient group, then G is somehow a
‘combination’ of N and Q. We call G an extension of Q by N .

3So called because it is the group of symmetries of the regular icosahedron and regular dodecahedron.
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Now consider the ‘inverse’ problem: Given two groups N and Q, what are all the ways in
which N and Q can be ‘combined’ to yield a group G, so that N � G and Q ∼= G/N ? That
is, what are all the extensions of Q by N ? The most obvious extension of Q by N is just
the direct product, G = N ×Q. However, this is rarely the only extension. The problem of
characterizing these extensions is the Extension Problem.

An extension is sometimes described using a short exact
sequence, a sequence of two homomorphisms and three
groups:

N
φ
� G

ψ
� Q,

such that:

1. φ : N � G is a monomorphism.

2. ψ : G � Q is an epimorphism.

3. φ(N ) = ker(ψ). eQ

eG

k
e
r
(

ψ
)

ψ

eN
φ

G

N
Q

In other words, if ˜N = φ(N ), then ˜N is a normal subgroup of G, there is an isomorphism

N ∼= ˜N (via φ), and Q ∼= G/ ˜N . The advantage of this notation is that we can apply the
following lemma.

Proposition 60 The Five Lemma

Let (N
φ
� G

ψ
� Q) and ( ˜N

˜φ
� ˜G

˜ψ
� ˜Q) be two short exact sequences of groups, linked

together in the following commuting diagram:

-

--

--
? ?

-

?

-

-

-

˜G

G Q

˜Q˜N

N
φ ψ

˜φ ˜ψ

ν γ χ

If any two of the morphisms ν, γ, and ξ are isomorphisms, then the third one is, as well.
In particular, suppose that G and ˜G are two extensions of Q by N , and that there is a

homomorphism γ : G−→˜G so that the following diagram commutes:

PPPPPPPPq

XXXXXXXXXz

XXXXXXXXz

���
���

���:

���
���

�:?

��1
PPq
��

��
��

��1

˜G

G

N Q
φ ψ

˜ψ˜φ
γ



54 CHAPTER 5. THE STRUCTURE THEORY OF NONABELIAN GROUPS

e2

e1

ker(φ
2)

φ2φ1

G1

ke
r(

φ 3)

e4

e3

ker(φ
4)

φ4φ3

G3

ke
r(

φ 5)

e6

e5

ker(φ
6)

φ6φ5

G5

e0
ke
r(

φ 1)

G0 G2 G4 G6

Figure 5.2: An exact sequence

Then γ is an isomorphism, so that G ∼= ˜G.

Proof: Exercise 31 2

The Extension Problem is an important part of the Hölder program (§5.3), and also arises
frequently in algebraic topology, differential geometry, and algebraic geometry, where we often
characterize the ‘shape’ of a space X using group G (eg. a homotopy group, (co)homology group,
holonomy group, etc.). Our analysis of X often provides only ‘indirect’ information about G,
in the form of two groups N and Q so that G is an extension of Q by N . Thus, to compute G,
we must solve the extension problem.

5.6 (∗) Exact Sequences

Prerequisites: §5.5

An morphism sequence is a sequence of groups and group homomorphisms:

G0
φ1−→ G1

φ2−→ G2
φ3−→ . . .

φN−→ GN .

We say this sequence is exact if (as shown in Figure 5.2),

image [φ1] = ker(φ2), image [φ2] = ker(φ3), . . . . . . , image [φN−1] = ker(φN).

For example, a short exact sequence is an exact sequence containing exactly 3 nontrivial ele-
ments:

0
ξ
↪→ N

φ
� G

ψ
� Q ζ−→ 0.

In other words:
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1. ker(φ) = ξ(0) = {e} —hence, φ is a monomorphism.

2. ζ(Q) = 0 —hence, ker(ζ) = Q.

3. ψ(G) = ker(ζ) = Q —hence, ψ is an epimorphism.

4. ker(ψ) = φ(N ).

5.7 Solvability

Prerequisites: §5.3

A group G is called solvable if it has a normal series:

{eG} = N0 � N1 � N2 � . . . � NJ = G. (5.8)

such that the quotient groups



























A1 = N1/N0 = N1

A2 = N2/N1

A3 = N3/N2
...

AJ = NJ/NJ−1 = G/NJ−1



























are all abelian groups.

The series (5.8) is called a solution series for G. Note that the solution series (5.8) is not
necessarily a composition series, because the groups A1, . . . ,AJ are not necessarily simple.

Example 61:

(a) Any abelian group is solvable. If G is an abelian group, then the normal series

{0} = N0 �N1 = G

is a solution series, because A1 = N1/N0 = G is abelian.

(b) Let G = S3. Then S3 is nonabelian, but it is still solvable. To see this, let N1 = A3.
Then the normal series {0} = N0 �N1 �N2 = G is a solution series, because

A1 = N1/N0 = A3
∼= Z/3 is abelian.

and A2 = N2/N1 = S3/A3
∼= Z/2 is abelian.

(c) For any N ∈ N, the dihedral group D2×N is nonabelian but solvable. To see this, let ρ be
a rotation and κ be a reflection, so that D2×N is generated by {ρ, κ}. Let N1 = 〈ρ〉 ∼=
Z/N . Then N1 � D2×N , and D2×N/N1 is a two-element group, isomorphic to Z/2. Thus,
A1 = N1/{e} = Z/N is abelian, and A2 = D2×N/N1 = Z/2 is abelian.

Theorem 62 Let G be a group. The following are equivalent:
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(a) G is solvable.

(b) The composition factors of G are all cyclic groups of prime order.

(c) G has a normal series {eG} = N0 � N1 � N2 � . . . � NJ = G. where each of
the factors Aj = Nj/Nj−1 is a cyclic group.

(d) G has a solution series {eG} = N0 � N1 � N2 � . . . � NJ = G so that Nj is
not only normal in Nj+1, but is actually normal in G.

Proof: ‘(a)=⇒(b)’ Exercise 32 Hint: combine Proposition 58 on page 49 with Proposition 59 on
page 51.

‘(b)=⇒(c)’ follows immediately from the definition of composition factors.

‘(c)=⇒(d)’ Exercise 33 .

‘(d)=⇒(a)’ is immediate. 2



Chapter 6

Group Actions

6.1 Introduction

Let A be a set, and let SA = {φ : A−→A ; φ any bijection} be the group of all permutations
of A. Thus, if A = [1..N ], then SA = SN is the Nth symmetry group.

If G is a group, then an action of G upon A is a group homomorphism σ : G−→SA. In
other words, to every element g ∈ G, σ associates a permutation σg : A−→A. This is a way
of realizing G as a group of transformations of A.

Notation: If a ∈ A and g ∈ G, we usually write ‘g.a’ to indicate the σg(a). This notation
has a convenient ‘associativity’ property: If g, h ∈ G, then

(g · h).a = σg·h(a) = σg ◦ σh(a) = σg

(

σh(a)
)

= σg (h.a)

= g.(h.a).

Because of this ‘associativity’, we can be careless about bracketting when describing group
actions: there is no ambiguity in just writing “g · h.a”.

Note: The ‘product’ g.a is just a notational convention, and does not really represent
‘multiplication’, since A is not, in general, a group.

Example 63:

(a) Let G = SN and let A = [1..N ]. Then SN acts on [1..N ] by permutations. For example,
if g = (123) and a = 2, then g.a = 3.

(b) Permutation groups: Let H < SN be any subgroup of SN . Then H also acts on [1..N ].
A subgroup of SN is called a permutation group.

(c) Let G = D2×5 be the symmetries of a pentagon, and let A = {1, 2, 3, 4, 5} represent the
five vertices of the pentagon. Then G acts by permuting these vertices. For example, if
ρ is counter-clockwise rotation, then ρ.1 = 2, ρ.2 = 3, etc.

57
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(d) Rotation: Let G = S1 be the unit circle group, and let A = R2. Then S1 acts on R2

by rotations about zero. To be precise, if θ ∈ S1 is any angle (between 0 and 2π), and

v =
[

v1

v2

]

∈ R2, then θ.v =
[

c −s
s c

]

[

v1

v2

]

, where s = sin(θ) and c = cos(θ).

(e) Conjugation: Any group acts upon itself by conjugation. Here, A = G, and for any
g ∈ G, we define σg : G−→G to be the map: σg(a) = gag−1.

(f) Left-multiplication: Any group acts upon itself by left-multiplication. Here, A = G,
and for any g ∈ G, we define σg : G−→G to be the map: σg(a) = g · a.

(g) Let A be a group, and let G ⊂ A be a subgroup. Then G acts on A by left-multiplication.
For any g ∈ G, we define σg : A−→A to be the map: σg(a) = g · a.

6.2 Orbits and Stabilizers

Prerequisites: §6.1

If a ∈ A, then the orbit of a is the set

OrbitG (a) = {g.a ; g ∈ G}

Sometimes the orbit of a is denoted “G.a”.

Example 64:

(a) Let G = S1 be the unit circle group, acting on A = R2 by rotations about zero, as in
Example 〈63d〉. Let v = (v1, v2), and let r = ‖v‖ =

√

v2
1 + v2

2 be the norm of v. Then

Orbit (v) =
{

w ∈ R2 ; ‖w‖ = r
}

is the circle of radius r about zero. In particular, note that Orbit ((0, 0)) = {(0, 0)}.

(b) Conjugation: Let G act upon itself by conjugation, as in Example 〈63e〉. If a ∈ G,
then the orbit of a is the set:

K (a) =
{

gag−1 ; g ∈ G
}

This is called the conjugacy class of a. Observe that, if a ∈ Z (G), then K (a) = {a}.

(c) Let A be a group, and let G ⊂ A be a subgroup acting on A by left-multiplication. as
in Example 〈63g〉. For any a ∈ G, Orbit (a) is just the right coset G.a.

Exercise 34 Verify these examples.

Lemma 65 Let G act on A.
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(a) For any a ∈ A, a ∈ Orbit (a).

(b) For any a, b, c ∈ A, if a ∈ Orbit (b) and b ∈ Orbit (c), then a ∈ Orbit (c).

(c) For any a, b ∈ A, the following are equivalent:

• a ∈ Orbit (b).

• b ∈ Orbit (a).

• Orbit (a) = Orbit (b).

(d) A is a disjoint union of orbits. For example, if A is finite, then A = O1 t O2 t . . . t OM ,
where Om = Orbit (am) for some am ∈ A.

Proof: (Exercise 35) 2

We say that the action of G on A is transitive if A = Orbit (a) for some a ∈ A.

Lemma 66 The following are equivalent:

1. G acts transitively on A.

2. For any a ∈ A, A = Orbit (a).

3. For any a, b ∈ A, there is some g ∈ G so that g.a = b.

Proof: (Exercise 36) 2

Example 67:

(a) Let G = SN act on A = [1..N ], as in Example 〈63a〉. This action is transitive. To see
this, let m,n ∈ [1..N ]. If σ = (nm), then σ.n = m.

(b) Let G = D2×5 act on A = {1, 2, 3, 4, 5}, as in Example (63c). Then this action is
transitive.

(c) Left-multiplication: Let G act upon itself by left-multiplication, as in Example 〈63f〉.
This action is transitive. To see this, let a, b ∈ G. Let g = b · a−1. Then g.a = b.

If a ∈ A, then the stabilizer of a is the set of elements which act trivially on a:

Stab (a) = {g ∈ G ; g.a = a}

Sometimes the stabilizer of a is denoted “Ga”.

Example 68:
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(a) Let G = S4, acting by permutations on A = [1..4], as in Example 〈63a〉. Then Stab (4) is
the set of all permutations which fix 4. Explicitly,

Stab (4) =
{

e, (12), (13), (15), (23), (25), (35), (12)(35), (13)(25), (15)(23), (123),

(125), (135), (132), (152), (153), (235), (253), (1235), (1532),

(1325), (1523), (1352), (1253)
}

.

(b) Let G = S1 be the unit circle group, acting on A = R2 by rotations about zero, as in
Example 〈63d〉. If v is any nonzero vector, then Stab (v) = {e}. However, Stab ((0, 0)) =
S1 —ie. all of S1 acts trivially upon (0, 0).

(c) Conjugation: Let G act upon itself by conjugation, as in Example 〈63e〉. If a ∈ G,
then the stabilizer of a is the set:

CG (a) = {g ∈ G ; ga = ag}

This is called the centralizer of a in G. Observe that, if a ∈ Z (G), then CG (a) = G.

Lemma 69 If b = g.a, then Stab (b) = g · Stab (a) · g−1.

Proof: (Exercise 37) 2

We say that the action of G upon A is free if Stab (a) = {e} for all a ∈ A. In other words,
every element of G acts nontrivially on every element of A.

Example 70:

(a) Let G act on itself by left-multiplication, as in Example (63f). This action is free: for
any g ∈ G and a ∈ G, if g.a = a, then g = e by left-cancellation.

If G acts on the set A via a homomorphism σ : G−→SA, then the kernel of the action is
the kernel of σ. In other words, the kernel is the set of all elements in G which act trivially
upon all elements of A.

Example 71: Let G act upon itself by left-multiplication, as in Example 〈63e〉. The kernel
of this action is just the center of G: Z (G) = {g ∈ G ; ga = ag for all a ∈ G}.

Lemma 72 Let G act on A, and let K be the kernel of the action. Then K =
⋂

a∈A

Stab (a).

In particular, if G acts freely, then K = {e}, so the map σ : G−→SA is a monomorphism.

Proof: (Exercise 38) 2
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Orbit(a)

G

A
a

S
=
S
t
a
b
(
a
)

g.a

g
.
S

Figure 6.1: The Orbit-Stabilizer Theorem

Corollary 73 (Cayley’s Theorem)

Every group is isomorphic to a permutation group. In particular, if |G| = N , then G is
isomorphic to a subgroup of SN .

Proof: Let G act upon itself by left-multiplication. Let σ : G−→SG be the associated
homomorphism, and let I = σ(G) ⊂ SG.

As we saw in Example 〈71〉, this action is free. Thus, Lemma 72 says that ker(σ) = {e};
hence, σ is an isomorphism between G and I. 2

Cayley’s theorem is nice because it establishes a connection between ‘abstract’ (algebraic)
groups and ‘concrete’ (transformational) groups. It also says that the permutation groups have
a sort of Universal Property: in a sense, every group is a subgroup of some permutation group.
Thus, if one knew everything about permutation groups, then one would know everything about
all groups. Although philosophically interesting, this result has surprisingly little application.
Partly this is because it suggests that we study a group of order N by embedding it in a (much
larger) group of order N !.

You may have noticed, in the previous examples, that the larger the stabilizer of a gets, the
smaller the orbit of a becomes. The precise formulation of this is as follows:

Theorem 74 (Orbit-Stabilizer Theorem)

Let G act on A, and let a ∈ A. Let S = Stab (a).

1. There is a bijection between the elements of Orbit (a) and the cosets of S in G, given by:

Φ : G/S 3 gS 7→ g.a ∈ Orbit (a) (see Figure 6.1)



62 CHAPTER 6. GROUP ACTIONS

2. Thus, |Orbit (a)| = |G/S|. If G is finite, then |Orbit (a)| = |G|
|S| .

Proof:

Claim 1: For any g, h ∈ G,
(

g.a = h.a
)

⇐⇒
(

h ∈ g.S
)

.

Proof:
(

g.a = h.a
)

⇐⇒
(

a = g−1.h.a
)

⇐⇒
(

g−1h ∈ Stab (a) = S
)

⇐⇒
(

h ∈ gS
)

. ......................................................... 2 [Claim 1]

(1) Φ is well-defined and injective: Let g, h ∈ G. We want to show
(

gS = hS
)

⇐⇒
(

Φ(gS) = Φ(hS)
)

. But,

(

gS = hS
)

⇐⇒
(

h ∈ gS
)

⇐Claim1⇒
(

g.a = h.a
)

⇐⇒
(

Φ(gS) = Φ(hS)
)

.

Φ is surjective: Let b ∈ Orbit (a). Then b = g.a for some g. Thus, b = Φ(gS).

(2) The first equality follows from (1). The second is just Lagrange’s Theorem. 2

Example 75: Conjugacy vs. Centralizers

Let G act upon itself by conjugation, as in Example (63e). If a ∈ G, then Example (68c)
says that the stabilizer of a is its centralizer:

Stab (a) = CG (a) = {g ∈ G ; ga = ag}

Let K (a) = Orbit (a) be the conjugacy class of a, as in Example (64b). Then the Orbit-

Stabilizer Theorem tells us: |K (a)| =
|G|
|CG (a)|

.

Corollary 76 (The Class Equation)

Let G be a finite group. Then

|G| = |Z (G)| +
|G|

|CG (a1)|
+

|G|
|CG (a2)|

+ . . . +
|G|

|CG (aN)|

where a1, . . . , aN represent the distinct nontrivial conjugacy classes of G.

Proof: Lemma 65(d) says that G is a disjoint union of conjugacy classes:

G = K1 t K2 t . . . t KM (6.1)
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Recall that, if z ∈ Z (G), then K (z) = {z}. Suppose Z (G) = {z1, z2, . . . , zL}. Let N =
M − L, assume without loss of generality that KN+1 = {z1},KN+2 = {z2}, , . . . ,KM = {zL}.
Then we can rewrite eqn. (6.3) as:

G = K1 t K2 t . . . t KN t {z1} t {z2} t . . . t {zL} = K1 t K2 t . . . t KN t Z (G) .

Thus,

|G| = |K1|+ |K2|+ . . .+ |KN |+ |Z (G)| . (6.2)

For all n ∈ [1..N ], suppose that Kn = K (an) for some an ∈ G. Then Example 75 says that

|Kn| =
|G|

|CG (an)|
. (6.3)

Substituting eqn. (6.3) into eqn. (6.2) yields the Class Equation. 2

Corollary 77 If |G| = pk for some prime p, then Z (G) is nontrivial.

Proof: Let Z = |Z (G) |. Since e ∈ Z (G), we know that Z ≥ 1. Thus, the Class Equation
reads:

pk = Z +
pk

C1

+
pk

C2

+ . . .+
pk

CN

where Cn = |CG (an) |. Observe that all the terms pk

Cn
must be divisible by p, and of course,

pk is divisible by p. Thus, Z must also be divisible by p. Since Z ≥ 1, we conclude that
Z = pm for some m ≥ 1. 2

6.3 The Simplicity of AN

Prerequisites: §5.2, §6.2 Recommended: §5.3

To realise the Hölder program, we must identify all finite simple groups. So far, the only sim-
ple groups we know are the prime-power cyclic groups: Z/2, Z/3, Z/5, Z/7, Z/11, Z/13, Z/17, . . ..
All of these are abelian. Are there any nonabelian simple groups?

The answer is, ‘Yes’. The smallest nonabelian simple group is the alternating group A5,
which has order 60 (also called the icosahedral group, because it is the group of symmetries of
the regular icosahedron and regular dodecahedron). We will show that, for any N ≥ 5, the
group AN is simple.

Let G be a group. If g ∈ G, recall that the conjugacy class of g is the set K (g) =
{hgh−1 ; h ∈ G}. If g ∈ Z (G), then K (g) = {g}. In particular, K (e) = {e}.
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Recall from Lemma 65(d) (page 58) that G is a disjoint union of its conjugacy classes1. In
other words,

G = Z (G) t K1 t K2 t . . . t KJ , (6.4)

where, for j ∈ [1..J ], Kj = K (gj) for some gj ∈ G.

Lemma 78 Let G be a group with conjugacy class decomposition (6.4), and let N � G be

a normal subgroup.

(a) If g ∈ N, then K (g) ⊂ N.

(b) Thus, N is a disjoint union of conjugacy classes. In other words, N = Y tKj1 t . . .tKjI ,
where Y ⊂ Z (G), and where {j1, j2, . . . , jI} ⊂ [1..J ] is some subcollection.

(c) Thus, |N| = Y +Kj1 +Kj2 + . . .+KjI , where Y = |Y|, and Kj = |Kj| for j ∈ [1..J ].

Proof: Exercise 2

Corollary 79 (Combinatorial Simplicity Criterion)

Let G be a group with conjugacy class decomposition (6.4), and let Kj = |Kj| for j ∈ [1..J ].
Let Z = |Z (G)|.

Suppose that there exists no number Y ∈ [1..Z], and no proper subcollection {j1, j2, . . . , jI} ⊂
[1..J ] so that the sum (Y +Kj1 +Kj2 + . . .+KjI ) divides |G|. Then G is simple.

Proof: If N was any proper normal subgroup of G, then |N| = Y +Kj1 +Kj2 + . . .+KjI ,
as in Lemma 78(c). Here, Y = |Y|, where Y ⊂ Z (G) and e ∈ Y. Thus, 1 ≤ |Y| ≤ Z.

On the other hand, N is a subgroup of G, so by Lagrange’s theorem, |N| must divide |G|.
If no sum (Y +Kj1 +Kj2 + . . .+KjI ) divides |G|, then no such N can exist. 2

Example 80: Suppose G was a group of order 60, with trivial center. Thus, Z = 1. Suppose
the conjugacy classes of G are K1, K2, K3, and K4, where K1 = |K1| = 20, K2 = |K2| = 12,
K3 = |K3| = 12, and K4 = |K4| = 15. Observe that none of the numbers

1 + 20 1 + 12 1 + 20 + 12 1 + 15 1 + 20 + 15
1 + 20 + 12 1 + 20 + 12 + 15 1 + 12 + 12 1 + 15 + 12 + 12 1 + 20 + 12 + 12

divides 60. Thus, G is simple by Corollary 79.

1See also the proof of the Class Equation, Corollary 76 on page 62.
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We will prove that A5 is simple by applying Corollary 79. Indeed, we will show that
A5 satisfies exactly the description of Example 〈80〉. First we need a way of measuring the
conjugacy classes of A5. To start, we’ll look at conjugacy classes in S5 (which are not the same,
but are related).

Lemma 81 (Conjugacy in SN)

Let σ, τ ∈ SN . If σ = (a1a2 . . . an)(b1b2 . . . bm) . . . (c1c2 . . . c`),

then τστ−1 =
(

τ(a1)τ(a2) . . . τ(an)
)(

τ(b1)τ(b2) . . . τ(bm)
)

. . .
(

τ(c1)τ(c2) . . . τ(c`)
)

.

Proof: Exercise 2

Example 82: Suppose σ = (1 2 3) (4 5) (6 7), and τ = (1 5 2 3) (7 4 6). Then
τστ−1 = (5 3 1) (6 2) (7 4).

Let σ ∈ SN , and write σ as a product of disjoint cycles:

σ = (a1a2 . . . an)(b1b2 . . . bm) . . . (c1c2 . . . c`) (6.5)

Assume without loss of generality that n ≤ m ≤ . . . ≤ `. The cycle type of σ is the list of
numbers (n,m, . . . , `). For example, if σ = (1 2 3) (4 5 6 7) (8 9 10 11) (12 13 14 15 16), then
its cycle type is (3, 4, 4, 5)

Proposition 83 Let σ, σ1 ∈ SN . Then
(

σ and σ′ are conjugate in SN
)

⇐⇒
(

σ and σ′ have the same cycle type
)

Proof: Suppose σ = (a1a2 . . . an)(b1b2 . . . bm) . . . (c1c2 . . . c`).

‘=⇒’: Suppose σ′ = τσ1τ
−1. Let a′1 = τ(a1), a′2 = τ(a2), etc. Then Lemma 81 says that

σ′ = (a′1a
′
2 . . . a

′
n)(b′1b

′
2 . . . b

′
m) . . . (c′1c

′
2 . . . c

′
`), which clearly has the same cycle type as σ.

‘⇐=’: Suppose σ′ has the same cycle type as σ. Thus, σ′ = (a′1a
′
2 . . . a

′
n)(b′1b

′
2 . . . b

′
m) . . . (c′1c

′
2 . . . c

′
`),

for some elements a′1, a
′
2, . . . , a

′
n, b
′
1, . . . , b

′
m, . . . ∈ [1..N ]. Let τ be the permutation defined by

the property: τ(a1) = a′1, τ(a2) = a′2, etc. Then Lemma 81 says that τστ−1 = σ′. 2

Corollary 84 Let σ ∈ SN have cycle type (m1,m2, . . . ,mk), and let M = m1+m2+. . .+mK .

Then |K (σ) | =
N !

(m1m2 . . .mk) · (N −M)!
.
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Proof: To keep notation simple, we’ll give the proof when σ has cycle type (n,m, `) —the
general case is much the same. By Proposition 83, K (σ) consists of all permutations with
this same cycle type. How many of these are there? I want to build a permutation with cycle
decomposition

(a1a2 . . . an)(b1b2 . . . bm)(c1c2 . . . c`)

where a1a2 . . . an, b1b2 . . . bm, c1c2 . . . c` are distinct elements of [1..N ]. I have N choices for
a1. Once a1 is chosen, I have (N − 1) choices left for a2. Then I have (N − 2) choices left for
a3, and so on. At the end, I have (N −M + 1) choices for c`, where M = n + m + `. The
total number of choices is

N ·(N−1)·(N−2)·. . .·(N−M+1) =
N · (N − 1) · . . . · 2 · 1

(N −M) · (N −M − 1) · . . . · 2 · 1
=

N !

(N −M)!

But we’re not done yet, because the permutation (a1a2a3 . . . an) is really the same as the per-
mutation (a2a3a4 . . . an−1ana1). Thus, in the previous argument, we have counted the same
permutation many times. To be precise, we have n times overcounted each cycle (a1a2 . . . an),
because there are n distinct cyclically permuted ways of writing this cycle which really rep-
resent the same permutation. Likewise we have m times overcounted each cycle (b1b2 . . . bm)
and we have ` times overcounted each cycle (c1c2 . . . c`). In total we have overcounted by a

factor of n·m·`. Thus, we must divide by n·m·` to conclude: |K (σ) | =
N !

n ·m · ` · (N −M)!
.

2

Example 85: If σ = (1 2 3 4 5) in S8, then M = m1 = 5, so that K (σ) has cardinality
8!

5 · (8− 5)!
=

8 · 7 · 6 · 5 · 4
5

= 1344.

Recall that the centralizer of an element g in group G is the set CG (g) = {c ∈ G ; cg = gc}.

Lemma 86 If G is any group, and g ∈ G, then |K (g) | =
|G|
|CG (g) |

.

Proof: Let G act on itself by conjugation. Then K (g) is just the orbit of g under this group
action, and CG (g) is just the stabilizer of g. The result now follows from the Orbit-Stabilizer
theorem. 2

Corollary 87 If σ ∈ SN has cycle type (m1,m2, . . . ,mK) and M = m1 + . . . + mK , then

|CSN (σ)| = m1 ·m2 · . . . ·mK · (N −M)!.

Proof: Combine Corollary 84 and Lemma 86. 2
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Example 88: If σ = (1 2 3 4 5) in S8 then CS8 (σ) has cardinality 5·(8−5)! = 5·3! = 30.

Corollary 87 provides information only about the size of CSN (σ) but in some cases this is
enough to exactly determine CSN (σ)....

Corollary 89 Suppose σ = (a1a2 . . . aM) is a single M -cycle, for some M ≤ N . Let

A = {a1, a2, . . . , an}, and let B = [1..N ] \ A. Then

CSN (σ) = {σmτ ; m ∈ [0..M), τ a permutation of B}

Proof: Let S = {σmτ ; m ∈ [0..M), τ a permutation of B}.
Claim 1: S ⊂ CSN (σ).

Proof: Clearly, any power of σ commutes with σ, and if τ is a permutation of B, then τ
and σ do not touch any of the same elements of [1..N ], so τ also commutes with σ. Thus,
any element σmτ in S commutes with σ. .............................. 2 [Claim 1]

Now, Corollary 87 says that |CSN (σ)| = M · (N −M)!.

Claim 2: |S| = M · (N −M)! also.

Proof: Observe that |B| = N−M , so the number of permutations τ of B is (N−M)!. The
number of distinct powers of σ is M . Thus, the number of products σm · τ is M · (N −M)!.
2 [Claim 2]

Combining Claims 1 and 2, we conclude that S = CSN (σ). 2

Example 90: Consider S5. If σ = (1 2 3) then

CS5 (σ) = {σnτ ; n = 0, 1, 2, τ permutes {4,5}} = {(1 2 3)n(4 5)m ; n = 0, 1, 2, m = 0, 1}

=
{

e, (4 5), (1 2 3), (1 2 3)(4 5), (1 3 2), (1 3 2)(4 5)
}

.

If σ = (12345) then CS5 (σ) = {σn ; n = 0, 1, 2, 3, 4} = {e, (12345), (13524), (14253), (15432)}.

Proposition 91 A5 is simple.

Proof: We will apply Corollary 79. We need to measure the conjugacy classes of A5.

Claim 1: Let σ, τ ∈ AN . If σ and τ are conjugate in AN , then they have the same cycle
type.

Proof: If σ and τ are conjugate in AN , then σ = ατα−1 for some α ∈ AN . Since AN ⊂ SN ,
this means that If σ and τ are also conjugate in SN . Now apply Proposition 83. 2
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(Note that, unlike Proposition 83, the statement of Claim 1 is not ‘if and only if’.)

Claim 2: The distinct cycle types of A5 are:

(a b c), (a b c d e), (a b)(c d)

and the identity element e.

Proof: Exercise. ..................................................... 2 [Claim 2]

Claim 3: There are exactly 20 elements in A5 of cycle type (a b c), and all are conjugate.

Proof: As in Corollary 87, the number of elements of type (a b c) is 5·4·3
3

= 20. To see that
all are conjugate, consider the element σ = (123). We want to show that |K (σ) | = 20.
Lemma 86 says

|K (σ) | =
|A5|
|CA5 (σ)

=
60

|CA5 (σ) |
,

so it suffices to show that |CA5 (σ) | = 3.

Now, CA5 (σ) = A5 ∩ CS5 (σ), and in Example 90 we found that

CS5 (σ) =
{

e, (45), (123), (123)(45), (132), (132)(45)
}

.

Of the six elements in this list, only three are in A5, namely, e, (123), and (132). Thus,
CA5 (σ) = {e, (123), (132)} has cardinality 3, so that |K (σ) | has cardinality 60/3 = 20,
as desired. .......................................................... 2 [Claim 3]

Claim 4: There are exactly 24 elements in A5 of cycle type (a b c d e), and they fall into
two conjugacy classes, having 12 elements each.

Proof: As in Corollary 87, the number of elements of type (a b c d e) is 5·4·3·2
5

= 24.
Consider the element σ1 = (1 2 3 4 5); we’ll show that |K (σ1) | = 12. As in Claim 3, we
observe that

|K (σ1) | =
|A5|
|CA5 (σ1)

=
60

|CA5 (σ) |
,

so it suffices to show that |CA5 (σ1) | = 5. Again, CA5 (σ1) = A5∩CS5 (σ), and in Example
90 we found that CS5 (σ1) = {e, (12345), (13524), (14253), (15432)}. All five of these
elements are in A5, so we’re done.

Next, let σ2 = (13524); by similar reasoning, |K (σ2) | = 12. Thus, between them, K (σ1)
and K (σ2) cover all 24 elements of type (a b c d e).

It remains to show that σ1 and σ2 are not conjugate in A5. This is Exercise 39 (Hint:
Show that, if τσ2τ

−1 = σ1, then τ = σn1 · β, where β = (2453). Note that β is odd —thus, τ
must be odd. Thus, σ1 and σ2 cannot be conjugated with an even permutation, so they are not
conjugate in A5.) ..................................................... 2 [Claim 4]
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Claim 5: There are exactly 15 elements in A5 of cycle type (a b)(c d), and all are
conjugate.

Proof: Exercise. Hint: let σ = (12)(34), and show that |CA5 (σ) | = 4. .. 2 [Claim 5]

Combining Claims 2, 3, 4, and 5, we see that A5 fits the description of Example 〈80〉. Thus,
it must be simple. 2

Proposition 92 For any N ≥ 5, AN is simple.

Proof: (by induction on N)

Base Case: (N = 5) This is Proposition 91.

Induction: Let N ≥ 6, and suppose A(N−1) is simple. Let H�AN be some normal subgroup.
To show that AN is simple, we must show that either H = {e} or H = AN . Suppose, by
contradiction, that {e} 6= H 6= AN .

Recall that AN ⊂ SN , and that SN acts on [1..N ] by permutations.

Claim 1: If τ ∈ H, and τ 6= e, then τ fixes no element of [1..N ]. That is, τ(n) 6= n for
any n ∈ [1..N ].

Proof: Let Gn = Stab (n) = {α ∈ AN ; α(n) = n}.
Claim 1.1: Gn

∼= AN−1.

Proof: Let Fn = {σ ∈ SN ; σ(n) = n}. Then Fn is really the set of all permutations of
{1, 2, . . . , n−1, nX, n+1, . . . , N}, a set having N−1 elements, so Fn

∼= SN−1. But Gn =
AN ∩Fn is just the set of even elements in Fn —hence, Gn

∼= AN−1. 2 [Claim 1.1]

Claim 1.2: If e 6= τ ∈ H, and τ(n) = n, then Gn ⊂ H.

Proof: If τ(n) = n, then τ ∈ H ∩Gn. Thus, H ∩Gn 6= {e}. But H � AN , so that
H∩Gn�Gn. But by Claim 1, Gn is isomorphic to AN−1, and by induction hypothesis,
AN−1 is simple. Thus, Gn has no nontrivial proper normal subgroups. Hence, we must
have H ∩Gn = Gn, which means Gn ⊂ H. ........................ 2 [Claim 1.2]

Claim 1.3: If Gn ⊂ H for some n ∈ [1..N ], then Gm ⊂ H for all m ∈ [1..N ].

Proof: Let σ ∈ AN be such that σ(n) = m. Thus, σGnσ
−1 = σ

(

Stab (n)
)

σ−1
Lemma 69

Stab (σ(n)) = Stab (m) = Gm. Since Gn ⊂ H, it follows that Gm ⊂ σHσ−1.
However, σHσ−1 = H, because H is normal. ....................... 2 [Claim 1.3]

Thus, G1,G2, . . . ,GN ⊂ H, so that 〈G1,G2, . . . ,GN〉 ⊂ H.

Claim 1.4: 〈G1,G2, . . . ,GN〉 = AN .
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Proof: We want to show that any element of AN can be written as a product of elements
from G1,G2, . . . ,GN . So, let σ ∈ AN . Since σ is even, we can write it as a product of
an even number of 2-cycles:

σ = α1β1
︸︷︷︸

α2β2
︸︷︷︸

. . . αKβK
︸ ︷︷ ︸

= λ1 λ2 . . . λK

Here, λk = αkβk is a product of two 2-cycles.
Claim 1.4.1: For all k, λk ∈ Gnk for some nk

Proof: Suppose αk = (a1a2) and βk = (b1b2), for some a1, a2, b1, b2 ∈ [1..N ]. Thus,
λk = (a1a2)(b1b2) permutes the elements a1, a2, b1, b2, but fixes all other elements in
[1..N ]. But N ≥ 5 by hypothesis, so λk must fix at least one n ∈ [1..N ]. Thus,
λk ∈ Gn. .................................................... 2 [Claim 1.4.1]

Thus, σ = λ1λ2 . . . λK is a product of elements from G1,G2, . . . ,GN . 2 [Claim 1.4]

So, if τ ∈ H, and τ(n) = n, then Claim 1.2 says Gn ⊂ H. Then Claim 1.3 says that
Gm ⊂ H for all m. But then Claim 1.4 says AN ⊂ H —in other words, H = AN .
2 [Claim 1]

Claim 2: Let τ1, τ2 ∈ H. If there is any n ∈ [1..N ] so that τ1(n) = τ2(n), then τ1 = τ2.

Proof: If τ1 and τ2 are elements of H, then τ−1
1 τ2 ∈ H also. But if τ1(n) = τ2(n), then

τ−1
1 τ2(n) = n. By Claim 1, this means that τ−1

1 τ2 = e. Thus, τ1 = τ2. ... 2 [Claim 2]

Claim 3: All elements of H are products of disjoint 2-cycles. In other words, if τ ∈ H,
then τ = (ab)(cd)(ef) . . ., where a, b, c, d, e, f, . . . are all distinct.

Proof: Suppose τ contained a cycle of length 3 or longer. Thus,

τ = (a1a2a3 . . .)(b1b2 . . .) . . . (c1c2 . . .).

for some a1, a2, a3, . . . , b1, b2, . . . in [1..N ]. Let x, y ∈ [1..N ] be any elements, such that
x 6= a3, and let σ = (a3xy). Then σ ∈ AN .

Let τ1 = στσ−1. Since H is normal, and τ ∈ H, we know that τ1 ∈ H also. By Lemma 81,

τ1 =
(

σ(a1)σ(a2)σ(a3) . . .
)(

σ(b1)σ(b2) . . .
)

. . .
(

σ(c1)σ(c2) . . .
)

=
(

a1a2σ(a3) . . .
)(

σ(b1)σ(b2) . . .
)

. . .
(

σ(c1)σ(c2) . . .
)

.

Thus, τ1(a1) = a2 = τ(a1). On the other hand, τ1(a2) = x 6= a3 = τ(a2), so τ1 and τ2

cannot be equal. This contradicts Claim 2. ........................... 2 [Claim 3]

Let a, b, c, d, e, f ∈ [1..N ] be distinct elements (this is possible because N ≥ 6 by hypothesis),
and let τ = (ab)(cd)(ef) . . . be some element of H (by Claim 3, any element of H must have
this form). Let σ = (ab)(de). Then σ ∈ AN , so τ1 = στσ−1 ∈ H also. But Lemma 81 says
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that τ1 = (ab)(ce)(df). Thus, τ1 6= τ , but τ(a) = b = τ1(a). Again, we have a contradiction
of Claim 2.

By contradiction, we must conclude that H = AN . Hence, AN is simple. 2
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Chapter 7

Introduction

7.1 Basic Definitions and Examples

Recall the basic properties of integer arithmetic. The set of integers Z comes with two opera-
tions, addition and multiplication, which have the following properties:

1. (Z,+) is an abelian group. That is:

(a) ‘+’ is associative: For all n,m, ` ∈ Z, n+ (m+ `) = (n+m) + `.

(b) ‘+’ is commutative: For all n,m ∈ Z, n+m = m+ n.

(c) There is an additive identity element (namely, 0), such that for any n ∈ Z, 0+n =
n = n+ 0.

(d) Every element n ∈ Z has an additive inverse (namely −n), so that n+(−n) = 0 =
(−n) + n.

2. (Z, ·) is not a group. For example, the element 2 has no multiplicative inverse in Z (since
1
2

is not an integer).

However, ‘·’ is still associative: For all n,m, ` ∈ Z, n · (m · `) = (n ·m) · `.

3. Z satisfies the distributive law: For all n,m, ` ∈ Z, n · (m+ `) = (n ·m) + (n · `).

A ring is an abstract algebraic object which mimics these properties. To be precise, a ring
is a set R, equipped with two binary operations, ‘+’ and ‘·’, so that:

1. (R,+) is an abelian group. That is:

(a) ‘+’ is associative: For all r, s, t ∈ R, r + (s+ t) = (r + s) + t.

(b) ‘+’ is commutative: For all r, s ∈ R, r + s = s+ r.

(c) There is an additive identity element 0 ∈ R so that for any r ∈ R, 0 + r = r =
r + 0.

75
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(d) Every element r ∈ R has an additive inverse, denoted −r, so that r+ (−r) = 0 =
(−r) + r

2. (R, ·) is not a group. However, ‘·’ is still associative: For all r, s, t ∈ R, r·(s·t) = (r·s)·t.

3. R satisfies the distributive law: For all r, s, t ∈ R, r · (s+ t) = (r · s) + (r · t), and also
(s+ t) · r = (s · r) + (t · r).

Notice:

1. The operation ‘·’ need not be commutative (although it is for integers). If ‘·’ is commu-
tative, then we call R a commutative ring, or a domain.

2. A multiplicative identity is an element e ∈ R so that, for any r ∈ R, e·r = r = r·e.
If such an element exists, it is unique, and is denoted by ‘1’ (as in the integers).

The set R may not have a multiplicative identity (although it almost always does). A ring
without a multiplicative identity is sometimes called a rng. A ring having a multiplicative
identity is sometimes called a ring with identity.

Example 93:

(a) Let 2Z = {. . . ,−4,−2, 0, 2, 4, 6, 8, . . .} be the set of all even numbers. Then 2Z is a
commutative ring under the normal arithmetic operations of addition and multiplication.
However, 2Z has no identity element.

(b) More generally, for any n ∈ N, let nZ = {nz ; z ∈ Z} be the set of all multiples of n.
Then nZ is a commutative ring under the normal arithmetic operations of addition and
multiplication. However, unless n = 1, the ring nZ has no identity element.

(c) Rational numbers: Let Q =
{

a
b

; a, b ∈ Z
}

be the set of rational numbers. We define
addition and multiplication on Q in the obvious way:

a1

b1

+
a2

b2

=
a1b2 + a2b1

b1b2

, and
a1

b1

· a2

b2

=
a1 · a2

b1 · b2

. (7.1)

Then Q is a commutative ring, with additive identity 0 and multiplicative identity 1.

(d) Real numbers: Let R be the set of real numbers. Then R is a commutative ring under
the normal arithmetic operations of addition and multiplication. It has a multiplicative
identity, namely 1.

(e) Complex numbers: Let C be the set of complex numbers. That is, C = {x+ yi ; x, y ∈ R},
where i is the square root of negative one, satisfying the equation: i2 = −1. The arith-
metic operations on C are defined:

(x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i
(x1 + y1i) · (x2 + y2i) = (x1y1 − x2y2) + (x1y2 + x2y1)i

}

(7.2)

Then C is a commutative ring, with multiplicative identity 1 = 1 + 0i.
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(f) Gaussian Integers: Let Z[i] = {z + yi ; z, y ∈ Z}, where i is the square root of nega- Num.Thr.

tive one, satisfying the equation: i2 = −1. Thus, Z[i] is a subset of C, and the arithmetic
operations on Z[i] are again defined by the equations (7.2). It is left as Exercise 40 to
show that Z[i] is closed under these operations and forms a commutative ring.

(g) Hamiltonians: The ring of Hamiltonions is defined as follows. First, we introduce
three formal elements, i, j, and k, all of which are square roots of −1. That is:

i2 = j2 = k2 = −1.

Furthermore, i, j, and k, are related by the following expressions:

ij = k; jk = i; ki = j.
ji = −k; kj = −i; ik = −j.

}

(7.3)

(Note that this multiplication is not commutative)

The Hamiltonions are the set H of all formal linear combinations of the form

w + xi + yj + zk, where w, x, y, z are any real numbers.

We define addition in the obvious fashion:

(w1+x1i+y1j+z1k) + (w2+x2i+y2j+z2k) = (w1+w2) + (x1+x2)i + (y1+y2)j + (z1+z2)k.

We define addition by applying the formulae (7.3), and legislating that multiplication is
distributive. For example:

(3 + 4i− 5j) · (2 + 6i) = 3(2 + 6i) − 4i(2 + 6i) − 5j(2 + 6i)

= (6 + 12i) − (8i + 24i2) − (10j + 30ji)

= 6 + 12i − 8i− 24 − 10j− 30k

= (6− 24) + (12− 8)i − 10j − 30k.

H is a noncommutative ring, with additive identity 0 = 0 + 0i+ 0j+ 0k and multiplicative
identity element 1 = 1 + 0i + 0j + 0k. Note that H and is an ‘extension’ of C in the same
way that C is an extension of R.

(h) Let Z/5 = {0̄, 1̄, 2̄, 3̄, 4̄} be the set of congruence classes of integers, mod 5, and let ‘+’
and ‘·’ be addition and multiplication, mod 5. For example:

2̄ + 4̄ = 1̄, and 2̄ · 4̄ = 3̄.

Then Z/5 forms a commutative ring, with additive identity element 0̄, and multiplicative
identity 1̄.
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(i) More generally, for any n ∈ N, let Z/n be the set of congruence classes of integers, mod n,
and let ‘+’ and ‘·’ be addition and multiplication, mod n. Then Z/n forms a commutative
ring, with additive identity element 0̄, and multiplicative identity 1̄.

(j) Trivial Ring: The set {0} is a ring, where 0+0 = 0 = 0 ·0. It is called the trivial ring.

The axioms of ring arithmetic have some basic consequences:

Proposition 94 Let R be a ring.

(a) If R has additive identity 0, then for any r ∈ R, r · 0 = 0 = 0 · r.

(b) Each element in R has a unique additive inverse.

(c) If s ∈ R has additive inverse −s, then for any r ∈ R, (−s) ·r = −(s ·r) = s ·(−r).
In particular, for any r ∈ R, (−1) · r = −r = r · (−1).

(d) If R has a multiplicative identity, it is unique. In other words, if e1 and e2 are two
elements of R such that e1 · r = r and e2 · r = r for any r ∈ R, then e1 = e2.

The unique additive inverse is denoted 1, or 1R.

Note: If e ∈ R, then the fact that e · r = r for some r ∈ R, is not sufficient to conclude
that e is the multiplicative identity. See Remark B of Example 〈95a〉 below.

(e) If r ∈ R has a multiplicative inverse, then it is unique. In other words, if i1 and i2 are
two elements of R such that i1 · r = 1 and i2 · r = 1, then i1 = i2.

Proof: Exercise 41 2

7.2 (∗) Many Examples of Rings

Prerequisites: §7.1

[This section contains many examples. It is not necessary to read and understand all these examples right
now; just read a few in order to get your intuititions working. These examples will be referred to throughout
the text.]

Example 95: (Product Rings )

〈a〉 Let R = R2, and define addition and multiplication componentwise. That is, for any
(x1, y1) ∈ R2 and (x2, y2) ∈ R2,

(x1, y1) + (x2, y2) = (x1 + y1, x2 + y2)

(x1, y1) · (x2, y2) = (x1 · y1, x2 · y2)
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Then R2 is a commutative ring, with additive identity 0 = (0, 0) and multiplicative
identity 1 = (1, 1).

Remark A: The abelian group (R2,+) is isomorphic to the group (C,+) (see Example
〈93e〉). However, rings (R2,+, ·) is not isomorphic to the ring (C,+, ·). Thus, we have
two rings which have identical additive structures, but which are not the same as rings.

Remark B: Let e = (1, 0). Observe that, for any element x = (x, 0) in R2, we have
e · x = x. However, e is not the multiplicative identity of R2. This is an example of the
warning in Proposition (94d).

〈b〉 More generally, if R and S are any two rings, we define the product ring R×S to have
componentwise addition and multiplication. That is, for any r1, r2 ∈ R and s1, s2 ∈ S,

(r1, s1) + (r2, s2) = (r1 + s1, r2 + s2)

(r1, s1) · (r2, s2) = (r1 · s1, r2 · s2)

Then R× S is a ring. Furthermore,

• If R has additive identity 0R and S has additive identity 0S , then R×S has additive
identity 0 = (0R, 0S).

• If R has multiplicative identity 1R and S has multiplicative identity 1S , then R×S
has multiplicative identity 1 = (1R, 1S).

• R × S is commutative if and only if R and S are both commutative.

Exercise 42 Verify these claims.

〈c〉 Let R1,R2, . . . ,Rn be rings; by iterating this construction, we can define the product
ring R1 ×R2 × . . .×Rn.

〈d〉 In particular, if R is any ring, then we define Rn = R×R× . . .×R
︸ ︷︷ ︸

n

.

Example 96: (Matrix Rings ) Grp.Repr.

〈a〉 LetM2(R) be the set of all 2×2 matrices with real coefficients. We define matrix addition
and multiplication in the familiar manner:

[

a1 b1

c1 d1

]

+

[

a2 b2

c2 d2

]

=

[

(a1 + a2) (b1 + b2)
(c1 + c2) (d1 + d2)

]

;

[

a1 b1

c1 d1

]

·
[

a2 b2

c2 d2

]

=

[

(a1a2 + b1c2) (a1b2 + b1d2)
(c1a2 + d1c2) (c1b2 + d1d2)

]

.

Then M2(R) is a noncommutative ring, with additive identity element 0 =
[

0 0
0 0

]

, and

multiplicative identity element Id =
[

1 0
0 1

]

(Exercise 43).
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Remark: The abelian groups (R4,+), (H,+) and (M2(R),+) are all isomorphic as
groups (see Examples (93g) and (95)). However, the rings (R4,+, ·), (H,+, ·) and
(M2(R),+, ·) are all different.

〈b〉 More generally, let Mn(R) be the set of all n × n matrices with real coefficients. We
define matrix addition and multiplication in the familiar manner. Then Mn(R) is a
noncommutative ring (Exercise 44), with

Additive identity 0 =







0 . . . 0
...

. . .
...

0 . . . 0





 and multiplicative identity Id =











1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1











.

〈c〉 LetMn(Z) be the set of all n× n matrices with integer coefficients. For example,
[

1 −9
3 7

]

is an element of M2(Z), but
[

1
2

9
5

3 7
2

]

is not. Then Mn(Z) is closed under matrix multipli-

cation, addition, and negation (Exercise 45), so it is also a (noncommutative) ring.

〈d〉 Let Mn(Q) be the set of all n × n matrices with rational coefficients. For example,
[

1
2

9
5

3 7
2

]

is an element of M2(Q), but
[

π
√

3
3 7

]

is not. Then Mn(Q) is closed under matrix

multiplication, addition, and negation (Exercise 46), so it is also a (noncommutative)
ring.

〈e〉 LetMn(C) be the set of all n× n matrices with complex coefficients, and letMn(H) be
the set of all n×n matrices with Hamiltonian coefficients. ThenMn(C) andMn(H) are
(noncommutative) rings.

〈f〉 In general, if R is any ring, let Mn(R) be the set of all n× n matrices with coefficients
in R. We define the multiplication and addition of these matrices in a manner exactly
analogous to that for real-valued matrices. ThenMn(R) is a ring. Observe:

1. Set n = 1; then M1(R) is identical to R.

2. If n ≥ 2, then Mn(R) is never commutative (even if R is commutative).

3. If R has multiplicative identity 1, then Mn(R) has multiplicative identity Id =












1 0 . . . 0
0 1 . . . 0

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 1













.

Exercise 47 Verify these claims.

Example 97: (Continuous Function Rings )Alg.Geo.
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〈a〉 Let C(R) be the set of all continuous real-valued functions f : R−→R. We define addition
and multiplication of functions pointwise. That is, for any f, g : R−→R and any r ∈ R,

(f + g)(r) = f(r) + g(r) and (f · g)(r) = f(r) · g(r).

It is proved in first-year calculus courses that the sum of two continous functions is
continuous, and the product of two continuous functions is continuous. Thus, C(R) is a
commutative ring. Observe:

1. The additive identity element is the constant zero function 0, defined by the property:
0(r) = 0 for any r ∈ R.

2. The multiplicative identity element is the constant one function 11, defined by the
property: 11(r) = 1 for any r ∈ R.

3. The additive inverse of f : R−→R is the function −f (also continuous).

(Exercise 48)[Verify these claims.]

The algebraic structure of C(R) somehow ‘encodes’ the topological structure of R. For
example, there exists no element f ∈ C(R) such that f is zero everywhere in (−∞, 1),
but f(1) 6= 0. This reflects the fact that the point 1 lies on the ‘boundary’ of the domain
(∞, 1). This relationship between topological and algebraic structure is the starting point
of algebraic geometry.

〈b〉 Let −∞ ≤ a < b ≤ ∞, and let C(a, b) be the set of all continuous real-valued functions
f : (a, b)−→R, with pointwise addition and multiplication. Then C(a, b) is a commutative
ring.

〈c〉 If U ⊂ Rn is any open subset, then let C(U) be the set of continuous real-valued functions
f : U−→R, with pointwise addition and multiplication. Then C(U) is a commutative
ring.

〈d〉 If X is any topological space, then let C(X) is the set of continuous real-valued functions
f : X−→R, with pointwise addition and multiplication. Then C(X) is a commutative
ring.

〈e〉 Similarly, if X is any topological space, let C(X;C) be the set of all continuous, complex-
valued functions f : X−→C, with pointwise addition and multiplication. Then C(X;C)
is a commutative ring.

〈f〉 Let −∞ ≤ a < b ≤ ∞, and let C1(a, b) be the set of all continuously differentiable real-
valued functions f : (a, b)−→R, with pointwise addition and multiplication. It is proved
in first-year calculus that the sum of two differentiable functions is differentiable, and the
product of two differentiable functions is differentiable. Thus, C1(a, b) is a commutative
ring, with additive identity 0 and multiplicative identity 11.
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supp(f)

f

supp(g)

g

supp(f+g)

f+g

supp(f)

f

supp(g)

g

supp(f.g)

supp(f)

f

f.g

(A) (B) (C)

Figure 7.1: Functions with compact support.

〈g〉 Let −∞ ≤ a < b ≤ ∞. For any k ∈ N, let Ck(a, b) be the set of all k times continuously
differentiable real-valued functions f : (a, b)−→R, with pointwise addition and multipli-
cation. Then Ck(a, b) is a commutative ring, with additive identity 0 and multiplicative
identity 11 (Exercise 49).

〈h〉 Let −∞ ≤ a < b ≤ ∞, and let C∞(a, b) be the set of all infinitely differentiable real-valued
functions f : (a, b)−→R, with pointwise addition and multiplication. Then C∞(a, b) is a
commutative ring, with additive identity 0 and multiplicative identity 11 (Exercise 50).

〈i〉 If U ⊂ Rn is an open subset, then

• C(U) is the set of continuous real-valued functions f : U−→R.

• C1(U) is the set of continuously differentiable real-valued functions f : U−→R.

• Ck(U) is the set of k times continuously differentiable real-valued functions f :
U−→R.

• C∞(U) is the set of infinitely differentiable real-valued functions f : U−→R.

• Cω(U) is the set of analytic real-valued functions f : U−→R.

Then all of these are commutative rings.

〈j〉 If M is any differentiable manifold (eg. a sphere, torus, etc), then let C∞(U) be the set
of infinitely differentiable real-valued functions f : U−→R, with pointwise addition and
multiplication. Then C∞(U) is a commutative ring.

〈k〉 Functions of Compact Support: If f : R−→R, then the support of f is the set of
all points where f is nonzero:

supp [f ] = {r ∈ R ; f(r) 6= 0} (see Figure 7.1A)

We say that f has compact support if supp [f ] is a bounded subset of R. Let C0(R) be
the set of all continuous functions f : R−→R with compact support.

If f, g : R−→R, it is not hard to show (Exercise 51)that:
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• supp [f + g] ⊂ supp [f ] ∪ supp [g] (see Figure 7.1B).

• supp [f · g] = supp [f ] ∩ supp [g] (see Figure 7.1C).

Thus, if f and g both have compact support, then so do the functions f+g and f ·g. Thus,
C0(R) is a commutative ring. Note, however, that C0(R) has no multiplicative identity,
because the function 11 does not have compact support: supp [11] = R.

Example 98: (Polynomial Rings ) Alg.Geo. ,

Galois

〈a〉 Polynomials of one variable: Let R[x] denote the set of all polynomial functions on
R —that is, functions of the form

P (x) = pnx
n + pn−1x

n−1 + . . .+ p2x
2 + p1x+ p0,

where pn, pn−1, . . . , p1, p0 are real numbers.

The sum or product of two polynomials is also a polynomial, so R[x] is a ring. Polynomial
arithmetic can be described by the following formulae:

(

pNx
N + . . .+ p2x

2 + p1x+ p0

)

+
(

qNx
N + . . .+ q2x

2 + q1x+ q0

)

= (pN + qN)xN + . . . + (p2 + q2)x2 + (p1 + q1)x + (p0 + q0). (7.4)
(

pNx
N + . . .+ p2x

2 + p1x+ p0

)

·
(

qMx
M + . . .+ q2x

2 + q1x+ q0

)

= pnqMx
N+M + (pNqM−1 + pN−1q

M)xN+M−1 + . . .

. . . + (p2q0 + p1q1 + p0q2)x2 + (p1q0 + p0q1)x + p0q0. (7.5)

We can write formulae (7.4) and (7.5) more abstractly:

(

N
∑

n=1

pnx
n

)

+

(

N
∑

n=1

qnx
n

)

=
N
∑

n=1

(pn + qn)xn (7.6)

(

N
∑

n=1

pnx
n

)

·

(

M
∑

m=1

qmx
m

)

=
N+M
∑

k=1

(

∑

n+m=k

pnqm

)

xk (7.7)

The degree of a polynomial is the highest exponent. For example, if p(x) = 4x3−7x2 +2,
then degree (p) = 3. If p(x) and q(x) are polynomials, then it is easy to verify:

degree (p · q) = degree (p) + degree (q) (Exercise 52) (7.8)

〈b〉 Complex Polynomials: Let C[x] be the set of all functions f : C−→C which are
polynomials with complex coefficients. Then C[x] is a commutative ring with identity.

〈c〉 Let Z[x] be the set of all functions f : Z−→Z which are polynomials with integer coeffi-
cients. Then Z[x] is a commutative ring with identity.
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〈d〉 Let Q[x] be the set of all functions f : Q−→Q which are polynomials with rational
coefficients. Then Q[x] is a commutative ring with identity.

〈e〉 Polynomials of Many Variables: Let R[x, y] be the set of all functions f : R×R−→R
which are polynomials in both variables. We define addition and multiplication in the
obvious way. For example,

(3x+ 4y) · (x2 − 2y) = 3x3 − 6xy + 4x2y − 2y2.

More generally, for any n ∈ N, let R[x1, x2, . . . , xn] be the set of all functions f : Rn−→R
which are polynomials in n variables. Then R[x1, x2, . . . , xn] is a commutative ring with
identity.

〈f〉 Abstract Polynomial Rings: If R is any ring, let R[x] be the set of all formal poly-
nomials

P (x) = pnx
n + pn−1x

n−1 + . . .+ p2x
2 + p1x+ p0,

where pn, pn−1, . . . , p1, p0 are elements ofR. Such an expression defines a functionR−→R.
However, we do not regard P (x) as a function, but instead as an abstract algebraic
expression. We refer to the symbol x as an indeterminant, which means it is just an
abstract algebraic ‘placeholder’.

Addition and multiplication are defined using formulae formulae (7.4) and (7.5). Then:

• R[x] is a ring.

• R[x] is commutative if and only if R is commutative.

• R[x] has a multiplicative identity if and only if R has one

Exercise 53 Verify these claims.

〈g〉 Let S = R[x] is a ring, and consider the polynomial ring S[y] (where y is another inde-
terminant). Elements of this ring are formal polynomials in the variables x and y, with
coefficients in R. Thus, we denote this ring by R[x, y].

More generally, for any n ∈ N, let R[x1, x2, . . . , xn] be the ring of all formal polynomials
in n variables, and coefficients in R.

〈h〉 Rational functions: Let R(x) denote the set of rational functions –that is, all functions

of the form f(x) = p(x)
q(x)

, where p, q ∈ R[x] are polynomials. We define addition and

multiplication on R(x) in the obvious way:

p1(x)

q1(x)
+
p2(x)

q2(x)
=

p1(x)q2(x) + p2(x)q1(x)

q1(x)q2(x)
, and

p1(x)

q1(x)
·p2(x)

q2(x)
=

p1(x) · p2(x)

q1(x) · q2(x)
. (7.9)

Then R(x) is a commutative ring.

Observe that R(x) is related to R[x] in the same way that Q is related to Z; indeed,
formula (7.9) is exactly analogous to formula (7.1) on page 76.
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Example 99: (Analytic Functions and Power Series )Alg.Geo.

〈a〉 Real Analytic Functions of one variable: Let 0 < r ≤ ∞, and let Cω(−r, r) be
the set of all analytic real-valued functions F : (−r, r)−→R. A function F is analytic if
F is infinitely differentiable, and F has a Taylor series

F (x) =
∞
∑

n=0

fnx
n (where f0, f1, f2, . . . are real numbers),

which converges everywhere on the interval (−r, r). For example, the exponential function
exp(x) is an element of Cω(−∞,∞) = Cω(R), because, for any x ∈ R,

exp(x) =
∞
∑

n=0

1

n!
xn

and this series converges uniformly on (−∞,∞).

Elementary calculus can be used to prove that the sum or product of two analytic functions
is also analytic. To be precise, if

F (x) =
∞
∑

n=0

fnx
n, and G(x) =

∞
∑

n=0

gnx
n,

then

F (x)+G(x) =
∞
∑

n=0

(fn+gn)xn, and F (x)·G(x) =
∞
∑

n=0

(

n
∑

k=0

fkgn−k

)

xn. (7.10)

Cω(−r, r) is a commutative ring, with additive identity 0 and multiplicative identity 11.

〈b〉 Holomorphic functions: If U ⊂ C is an open subset, then let Cω(U;C) be the set
of holomorphic functions F : U−→C. A function F is holomorphic if it is complex-
differentiable; it then has a Taylor series

F (x) =
∞
∑

n=0

fnx
n (where f0, f1, f2, . . . are complex numbers),

Then Cω(U;C) is a commutative ring.

〈c〉 Formal Power Series: We define R[[x]] to be the ring of all formal power series. In
other words,

R[[x]] =

{

∞
∑

n=0

fnx
n ; where f0, f1, f2, . . . are any real numbers

}
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Observe that we place no constraints on the coefficients f0, f1, f2, . . .. Thus, in general

the power series
∞
∑

n=0

fn may not converge anywhere. For example, the series

1− x+ x2 − x3 − x4 + x5 − . . .

is an element of R[[x]], despite the fact that this series has zero radius of convergence.

We define addition and multiplication in R[[x]] using formulae (7.10). Then R[[x]] is a
commutative ring, with additive identity 0 = 0+0x+0x2 + . . . and multiplicative identity
1 = 1 + 0x+ 0x2 + . . ..

〈d〉 Abstract Power Series: If R is any ring, then let R[[x]] be the set of formal power
series with coefficients in R. In other words,

R[[x]] =

{

∞
∑

n=0

fnx
n ; where f0, f1, f2, . . . are any elements of R

}

Note: in general, there is no topological structure onR. In other words, there is no notion
of ‘convergence’ on R, so it is meaningless to talk about the ‘convergence’ of this power
series. It is a purely formal construction.

We define addition and multiplication in R[[x]] using formulae (7.10). Then:

• R[[x]] is a ring.

• R[[x]] is commutative if and only if R is commutative.

• R[[x]] has a multiplicative identity if and only if R has one.

Exercise 54 Verify these claims.

〈e〉 Meromorphic functions: If U ⊂ C is an open subset, then let Cω(U; C̄) be the set of
meromorphic functions F : U−→C̄.

Here, C̄ = Ct{∞} is the Riemann Sphere, consisting of the complex plane and a ‘point at
infinity’. A function F is meromorphic if F is complex-differentiable everywhere except at
some discrete collection of poles, where F is infinite. For example, the function F (x) = 1

x−i

is meromorphic (and F (i) =∞).

If ζ ∈ U, then F has a Laurent series

F (x) =
∞
∑

n=−N

fn(x− ζ)n
(

Here, N ∈ N, and f−N , f1−N , . . . , f−1, f0, f1, f2, . . . are
any complex numbers.

)

which converges in a neighbourhood of ζ. If ζ is a pole, then N > 0. If ζ is not a pole
(ie. F (ζ) is finite) then N = 0.
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Cω(U; C̄) is a ring. Furthermore, if ζ ∈ U, and

F (x) =
∞
∑

n=−N

fn(x− ζ)n, and G(x) =
∞
∑

n=−M

gm(x− ζ)m,

then

F (x) +G(x) =
∞
∑

n=−N

(fn + gn)(x− ζ)n.
(

Assume WOLOG that M ≤ N
and define gn = 0 if n < −M

)

(7.11)

and F (x) ·G(x) =
∞
∑

n=−(N+M)

(

n
∑

k=−N

fkgn−k

)

(x− ζ)n. (7.12)

(Exercise 55).

〈f〉 Formal Laurent Series: We define C((x)) to be the ring of all formal Laurent series.
In other words,

C((x)) =

{

∞
∑

n=−N

fnx
n ; where N ∈ N, and f−K , f1−K , . . . are complex numbers

}

Observe that we place no constraints on the coefficients f0, f1, f2, . . .. Thus, in general,
the Laurent series may not converge anywhere.

We define addition and multiplication in C((x)) using formulae (7.11) and (7.12). Then
C((x)) is a ring, with additive identity 0 = 0 + 0x+ 0x2 + . . . and multiplicative identity
1 = 1 + 0x+ 0x2 + . . .. (Exercise 56)

〈g〉 Abstract Laurent Series: IfR is any ring, then letR((x)) be the set of formal Laurent
series with coefficients in R. In other words,

R((x)) =

{

∞
∑

n=−N

fnx
n ; where N ∈ N, and f0, f1, f2, . . . are any elements of R

}

Note: in general, there is no topological structure onR. In other words, there is no notion
of ‘convergence’ on R, so it is meaningless to talk about the ‘convergence’ of the Laurent
series. It is a purely formal construction.

We define addition and multiplication in R((x)) using formulae (7.11) and (7.12). Then:

• R((x)) is a ring.

• R((x)) is commutative if and only if R is commutative.

• R((x)) has a multiplicative identity if and only if R has one.
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Exercise 57 Verify these claims.

Example 100: (Abstract Function Rings)

〈a〉 Consider a set {s1, s2} with two elements. Let R{s1,s2} be the set of all functions from
{s1, s2} into R. Thus, an element f ∈ R{s1,s2} is a function with two values: f(s1) and
f(s2). We define addition and multiplication pointwise: (f + g)(s1) = f(s1) + g(s1), etc.
Then R{s1,s2} is a commutative ring (Exercise 58).

Observe that any element f of R{s1,s2} defines an element (x1, x2) of R2 (Example 〈95a〉),
where

x1 = f(s1) and x2 = f(s2). (7.13)

Conversely, any element (x1, x2) of R2 defines an element f of R{s1,s2} via equation (7.13).
Thus, there is a natural bijection between R{s1,s2} and R2.

〈b〉 More generally, let N = {s1, s2, . . . , sN} be a set with N elements, and let RN be the set
of all functions from N into R. We define addition and multiplication pointwise. Then
RN is a commutative ring (Exercise 59), and again, there is a natural correspondence
between RN and RN (Example 〈95d〉).

〈c〉 Let RR be the set of all functions from R to R. Thus, RR includes all elements of C(R)
(Example 〈97a〉), but also includes all discontinuous functions. Then RR is a commutative
ring under componentwise addition and multiplication.

〈d〉 Let X be any set, and let R be any ring. Let RX be the set of all functions from X into
R. Then:

• RX is a ring under componentwise addition and multiplication.

• RX is commutative if and only if R is commutative.

• RX is has a multiplicative identity if and only if R has one.

Exercise 60 Verify these claims.

Example 101: (Endomorphism Rings )

〈a〉 Consider the abelian group Z2, and let End [Z2] be the set of all endomorphisms of Z2;
that is, functions φ : Z2−→Z2 such that φ(y + z) = φ(y) + φ(z) for any y, z ∈ Z2.

We define addition on End [Z2] pointwise: if φ, γ ∈ End [Z2], and z ∈ Z2, then (φ +
γ)(z) = φ(z) + γ(z).

However, we do not define multiplication componentwise; instead, we define it via function

composition: if φ, γ ∈ End [Z2], and z ∈ Z2, then (φ ◦ γ)(z) = φ
(

γ(z)
)

.

It is left as Exercise 61 to verify:
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• If φ and γ are endomorphisms of Z2, then φ + γ and φ ◦ γ are also endomorphisms
of Z2.

• The set End [Z2] forms a noncommutative ring under these operations.

• The additive identity is the endomorphism O defined: O(z) = 0 for all z ∈ Z2.

• The multiplicative identity is the identity endomorphism Id defined: Id(z) = z for
all z ∈ Z2.

Endomorphism can be understood via matrices. If φ ∈ End [Z2], then there is a 2 × 2

integer matrix F =
[

f1 f2

f3 f4

]

so that, for any element z = (z1, z2) in Z2,

φ(z) =

[

f1 f2

f3 f4

][

z1

z2

]

=

[

f1z1 + f2z2

f3z1 + f4z2

]

If γ is another endomorphism, with matrix G, then the endomorphism (φ+γ) has matrix
F+G, and the endomorphism (φ◦γ) has matrix F ·G (Exercise 62). Thus, the algebra
of endomorphisms closely resembles the algebra of matrices.

〈b〉 More generally, let (A,+) be any additive abelian group, and let End [A] be the set of all
endomorphisms of A; that is, functions φ : A−→A such that φ(a + b) = φ(a) + φ(b) for
any a, b ∈ A.

Again, we define addition on End [A] pointwise, and we define multiplication via function
composition. In other words, if φ, γ ∈ End [A], and a ∈ A, then

(φ+ γ)(a) = φ(a) + γ(a) and (φ ◦ γ)(a) = φ
(

γ(a)
)

.

It is left as Exercise 63 to verify:

• If φ and γ are endomorphisms of A, then φ + γ and φ ◦ γ are also endomorphisms
of A.

• The set End [A] forms a noncommutative ring under these operations.

• The additive identity is the endomorphism O defined: O(a) = 0 for all a ∈ A.

• The multiplicative identity is the identity endomorphism Id defined: Id(a) = a for
all a ∈ A.

〈c〉 A subring of End [A] is called an endomorphism ring.

〈d〉 If G is a nonabelian group, then End [G] does not form a ring (Exercise 64).

Example 102: Rings of Subsets

Let X be some set, and let P(X) be the set of all subsets of X:

P(X) = {P ; P ⊂ X}.
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If P1,P2 ∈ P(X), then we define their sum as follows:

P1 + P2 = {x ∈ X ; either x ∈ P1 or x ∈ P2, but not in both}.

(Often, this is called the symmetric difference of P1 and P2, and written as “P14P2”) We
define the product of P1 and P2 to be their intersection:

P1 ·P2 = P1 ∩P2.

Then:

• The set P(X) is a commutative ring under these operations,

• The additive identity is the empty set ∅.
• The multiplicative identity is the set X.

P(X) is called the Ring of Subsets of X.

Exercise 65 Show that P1 ∪P2 = P1 + P2 + (P1 ·P2).

Example 103: (Group Rings )Grp.Repr.

〈a〉 Let R[x, x−1] to be the set of all polynomials in x and x−1 with real coefficients. An
example element of R[x, x−1] is

3x2 − 6x+ π +
5

2
x−1 − 7x−2 (7.14)

We define multiplication and addition of these polynomials in the obvious way, similar to
in Example 〈98a〉.

〈b〉 Another way to think about R[x, x−1] is as follows. Let X = {. . . , x−2, x−1, x0, x1, x2, . . .}
be the multiplicative group generated by a single element x. (Thus, X is isomorphic to
Z). We define RX to be the set of all formal linear combinations of elements in X . In
other words, an element of RX has the form

r1x
n1 + r2x

n2 + . . .+ rkx
nk

where r1, . . . , rk ∈ R, and n1, . . . , nk ∈ Z. For example the polynomial (7.14) could be an
element of RX .

We define addition and multiplication of elements in RX exactly as for polynomials. That
is:

(

r1x
n1 + r2x

n2 + . . .+ rkx
nk
)

+
(

s1x
n1 + s2x

n2 + . . .+ skx
nk
)

= (r1 + s1)xn1 + (r2 + s2)xn2 + . . .+ (rk + sk)x
nk ,
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and
(

r1x
n1 + r2x

n2 + . . .+ rkx
nk
)

·
(

s1x
m1 + s2x

m2 + . . .+ sjx
mj
)

= r1s1x
n1+m1 + r2s1x

n2+m1 + . . .+ rks1x
nk+m1

+ r1s2x
n1+m2 + r2s2x

n2+m2 + . . .+ rks2x
nk+m2 + . . .

. . .+ r1sjx
n1+mj + r2sjx

n2+mj + . . .+ rksjx
nk+mj

In other words, the algebra of RX is identical to that of R[x, x−1].

〈c〉 Let (G, ·) be any (multiplicative) group, and let R be any commutative ring. We define
RX to be the set of all formal linear combinations of elements in X with coefficients in
R. In other words, an element of RX has the form

r1g1 + r2g2 + . . .+ rkgk

where r1, . . . , rk ∈ R and g1, . . . ,gk ∈ G.

We define addition and multiplication of elements in RX exactly as for polynomials. That
is,

(

r1g1 + r2g2 + . . .+ rkgk

)

+
(

s1g1 + s2g2 + . . .+ skgk

)

= (r1 + s1)g1 + (r2 + s2)g2 + . . .+ (rk + sk)gk,

and
(

r1g1 + r2g2 + . . .+ rkgk

)

·
(

s1h1 + s2h2 + . . .+ sjhj

)

= r1s1g1h1 + r2s1g2h1 + . . .+ rks1gkh1 + r1s2g1h2 + r2s2g2h2 + . . .+ rks2gkh2 + . . .

. . .+ r1sjg1hj + r2sjg2hj + . . .+ rksjgkhj

Observe that this is the natural generalization of Example 〈103b〉. Then:

• RG is a ring.

• RG is commutative if and only if G is abelian.

• RG has multiplicative identity 0 = 0g for any g ∈ G.

• If G has identity eG , then RG has multiplicative identity 1 · eG .

(Exercise 66 Verify these claims). RG is called the Group ring of G with coefficients in
R. It is very important in the representation theory of groups (see § 7.3.5 on page 96)

7.3 (∗) Applications of Ring Theory

Prerequisites: §7.1

Here we briefly survey the major mathematical applications of ring theory.
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7.3.1 Algebraic Number Theory

Number theory studies the mathematical properties of the ring of integers. Abstract ring theory
sheds light on classical number theory in two ways:

1. We can contextualize the problems and results of number theory within a larger frame-
work. Given any result in number theory, we can ask, ‘Is this theorem true only for
integers, or does it generalize to some other rings as well?’

2. Problems about integers can often be solved by relating the integers to some other ring,
such as the Gaussian Integers Z[i] of Example 〈93f〉, or the ring Z/n of Example 〈93i〉.

For example, a Diophantine Equation is a polynomial equation of the form

p(x1, x2, . . . , xn) = 0,

where p ∈ Z[x1, x2, . . . , xn] is a polynomial in n variables with integer coefficients, and we
impose the constraint that x1, . . . , xn must be integers. For example, the equation

x2 − y = 0, (7.15)

says that y = x2, ie. that y is a perfect square. Equation (7.15) has solutions (x, y) = (1, 1),
(2, 4), (3, 9), etc. The Pythagorean equation

x2 + y2 − z2 = 0, (7.16)

says that x2 + y2 = z2 —in other words, (x, y, z) form a Pythagorean triple. One solution is
(x, y, z) = (3, 4, 5).

The obvious generalization of the Pythagorean Equation is the Fermat equation

xn + yn − zn = 0, (7.17)

(where n ∈ N is fixed), which says that xn + yn = zn. Fermat’s Last Theorem says there are no
nontrivial solutions for any n ≥ 3. This theorem was finally proved by Andrew Wiles in 1998,
after almost 4 centuries of mathematical effort.

It is (relatively) easy to find real or complex solutions to a polynomial equations like (7.15),
(7.16) or (7.17), but it is often very difficult to isolate the integer solutions —or indeed, even
to determine whether any exist. The study of Diophantine equations is thus a major area of
number theory, and ring theory provides important tools. The simplest tool is just reduction
mod p. For example, the equation (7.17) is true only if the congruence equation

xn + yn − zn ≡ 0 (mod p) (7.18)

is true, for any fixed p ∈ N. Equation (7.18) is an equation in the finite ring Z/p (Example
〈93i〉), and is probably easier to solve than (7.17).

We will indicate when a particular topic is relevant to algebraic number theory by placing
the flag Num.Thr. in the margin.
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7.3.2 Field Theory & Galois Theory

Consider the following three problems:

Solution formulae for polynomial equations: If a, b, c ∈ R are constants, then the quadratic
equation

ax2 + bx+ c = 0 (7.19)

can always be solved by recourse to the quadratic formula:

x =
−b±

√
b2 − 4ac

2a
. (7.20)

Geronimo Cardano (1501-1576) developed a similar (but much more complicated) formula
for solving a cubic equation:

ax3 + bx2 + cx+ d = 0.

Later, an even more complicated formula was developed solve the quartic equation:

ax4 + bx3 + cx2 + dx+ e = 0.

This raised the question: does there exist a formula to solve an arbitrary quintic equation

ax5 + bx4 + cx3 + dx2 + ex+ f = 0? (7.21)

What about higher-order polynomials?

Note that the question here is not whether a solution exists, but whether that solution can
always be found using an algebraic formula like (7.20). For example, the transcendental
equation

ex = 17 (7.22)

has a solution —namely, x = log(17). However, there is no finite algebraic expression for
x in terms of 17 and ‘radicals’ of 17, such as

√
17, 3
√

17 etc. So we’re asking,

Is equation (7.21) solvable via a finite expression involving radicals of a, b, c, etc? Or is
it like (7.22), possessing a solution, but not one we can easily describe?

The nature of the complex numbers: If 4ac > b2, then the quadratic equation (7.19) has
no real solution. In this case, the quadratic formula (7.20) produces a ‘nonsensical’ result,
involving the square root of a negative number. The complex numbers were introduced to
provide an interpretation for these ‘nonsense’ solutions; they ‘extend’ the real numbers to
a larger field, where the quadratic formula (7.20) always produces a meaningful answer.
Thus, in the complex numbers, every quadratic polynomial has a solution.

Does every polynomial equation have a solution in the complex numbers? Or must we
pass to an even larger field in order to solve cubics, quartics, quintics, etc.? C.F. Gauss
answered this:
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? ?

(A) (B) (C) (D) (E)

(F) (G)

Figure 7.2: Classical compass and straightedge constructions.

Fundamental Theorem of Algebra: Let P (x) = pnx
n+pn−1x

n−1+. . .+p2x
2+p1x+p0

be any polynomial with complex coefficients pn, . . . , p1, p0. Then:

1. There is a root z ∈ C so that P (z) = 0.

2. P can be completely factored over the complex numbers. In other words, there exist
z1, z2, . . . , zn ∈ C so that P (x) = (x− z1) · (x− z2) · · · (x− zn).

This raises the question: Given an arbitrary field F and some polynomial equation “p(x) =
0” over F, can we solve this equation by ‘extending’ F to a larger field E, in the same way
that we extended R to C? Is there something analogous to the Fundamental Theorem of
Algebra for these extensions?

Classical Geometric Constructions: Since the time of Euclid, certain geometric figures
have been constructed using a compass and straightedge. A compass is a string with a pin
at one end and a pencil at the other, used to inscribe circles of any radius. A straightedge
is just a peice of wood with a perfectly straight edge, used to inscribe lines. Using these
two simple tools, one can bisect angles (Figure 7.2A) , bisect lines and construct their
perpendiculars (Figure 7.2B) , and inscribe an equilateral triangle (Figure 7.2C), regular
hexagon (Figure 7.2D), or regular pentagon (Figure 7.2E), inside a given circle.

However, many things cannot be constructed. For example, after two thousand years of
effort, there is no known method to trisect an angle (Figure 7.2F), or to construct a regular
nonagon (a nine-sided polygon; see Figure 7.2G). Is this merely a failure of ingenuity? Or
is there a fundamental obstruction which makes these things impossible?

In 1832, while in prison, a twenty-one year old mathematician named Evariste Galois found
the key to solving these three problems, by studying the symmetry groups of the roots of poly-
nomials. Shortly afterwards, Galois was killed in a duel, but his ideas became the foundation
of the vast and beautiful theory which bears his name.
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3

5

Ellipse Folium of Descartes Lemniscate Conchoid of Nicomedes
(x/5)2 + (y/3)2 = 1 x3 + y3 - 6xy  =  0 2(x2 + y2)2  -  25 (x2 - y2)  = 0 x2y2   - (y+1)2 (4-y2)  =  0

Figure 7.3: Algebraic varieties.

We will indicate when a particular topic is relevant to galois theory by placing the flag Galois

in the margin.

7.3.3 Algebraic Geometry & Commutative Algebra

An algebraic variety is the geometric figure determined by the solutions to a polynomial
equation. For example, the unit sphere is the set of solutions (x, y, z) ∈ R3 to the equation

x2 + y2 + z2 − 1 = 0.

while an ellipse is the set of solutions (x, y) ∈ R2 to the equation

x2

a2
+
y2

b2
− 12 = 0.

where a, b ∈ R are constants. Figure 7.3 depicts several algebraic varieties and their defining
equations.

The geometric properties of algebraic varieties are closely related to the algebra the poly-
nomial ring R[x1, x2, . . . , xn] (Example 〈98e〉), and classical algebraic geometry explored this
relationship. The scope of modern algebraic geometry is far greater. For example, a differen-
tiable variety is a solution to an equation

f(x1, x2, . . . , xn) = 0, (7.23)

where f : Rn−→R is any differentiable function. The geometry of such varieties is related to
ring C∞(Rn) of differentiable functions (Example 〈3i〉). Any differentiable manifold in Rn can
be represented as a differentiable variety; thus, modern algebraic geometry subsumes a large
part of differential geometry.

At a topological level, any closed subset of Rn can be represented as the set of solutions to
an equation like (7.23), where f : Rn−→R is some continuous function. Thus, the topology of
Rn is ‘encoded’ by the structure of the ring C(Rn) of continuous functions (Example 〈3c〉). More
generally, if X is any ‘regular’ topological space (eg. any manifold, metric space, etc.), then
the entire topological structure of X is encoded in the structure of the ring C(X) of continuous
real-valued functions on X (Example (3d)).
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We can also reverse the direction of this correspondence. Given an arbitrary commutative
ring R, we ask, ‘Is there some space X so that R is the ring of continuous functions on X?’
Under suitable conditions, the answer is ‘yes’; this space is called the spectrum or Zariski
topology of R, and we can learn much about R by studying this space. Thus, there is a
geometric interpretation for any commutative ring.

The study of this relationship is sometimes called commutative algebra, since it concerns
commutative rings. However, recently, there has been an effort to generalize these methods
to noncommutative rings. Certain geometric structures (for example, foliations of manifolds)
can be represented with a noncommutative ring, just as the topology of a space X can be
represented using the commutative ring C(X). This burgeoning field is called noncommutative
geometry.

We will indicate when a particular topic is relevant to algebraic geometry by placing the
flag Alg.Geo. in the margin.

7.3.4 Algebraic Topology & Homological Algebra

Algebraic topology studies the global topological properties of spaces by ‘measuring’ their
structure using algebraic objects such as homotopy groups and (co)homology groups. These
objects are called homotopy invariants, because for a given space X, you will always ‘measure’
the same homotopy or homology groups for X, no matter how X is deformed.

Given two spaces X and Y, we might ask: Is Y really just a deformed version of X, or are
they fundamentally different? We can answer this question by computing homotopy invariants.
If X and Y yield different invariants, then they cannot be the same1.

This endeavour requires a lot of algebraic machinery, for two reasons:

• First, to compute the homotopy invariants of topological spaces.

• Second, to compare the invariants of two spaces, to see if they are the same or not.

This algebraic machinery involves rings, modules, and homomorphisms between modules, and
is called homological algebra.

We will indicate when a particular topic is relevant to algebraic topology or homological
algebra by placing the flag Alg.Top. in the margin.

7.3.5 Group Representation Theory & Ring Structure Theory

A representation of a group G is a homomorphism ρ : G−→GLn [R]. This allows us to study
the structure of G using the well-understood algebra of matrices. Given a group G, we ask,
‘What representations of G exist, and what can they tell us about G?’

Representation theory has many important applications. For example:

1On the other hand, if they yield the same invariants, X and Y might be the same, but they also might not
be.
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Physics: Groups represent the symmetries of physical laws. Thus, group representation theory
plays central role in the ‘Standard model’ of subatomic physics.

Nonabelian Harmonic Analysis: Fourier theory (aka harmonic analysis) provides a power-
ful tool for studying functions and probability distributions on the real line R, Euclidean
space Rn, the circle T1, or the torus Tn. Fourier theory is essential for solving differential
equations, and ubiquitous in probability theory.

Fourier theory is actually the representation theory of certain abelian groups. To gener-
alize the methods of Fourier Theory to nonabelian groups (eg. linear groups, Lie groups),
we must study the representation theory of these groups.

Given a representation ρ : G−→GLn [R], we can immediately extend ρ to a ring homo-
morphism ρ∗ : RG−→Mn(R) from the group ring over G to the ring of n × n matrices (see
Example 〈96b〉 on 80, and Example 〈103〉 on page 90). Conversely, any ring homomorphism
ρ∗ : RG−→Mn(R) determines a representation of the group G. Thus, the representation theory
of the group G is closely related to the group ring RG. Indeed, we can completely classify the
representations of G using the structure theory of RG.

We will indicate when a particular topic is relevant to group representation theory or ring
structure theory by placing the flag Grp.Repr. in the margin.

7.4 Subrings

Prerequisites: §7.1

If R is a ring with operations ‘+’ and ‘·’, then a subring of R is any subset S ⊂ R which
is also a ring, under the same operations. We indicate this by writing: “S < R”.

Example 104:

(a) 2Z < Z < Q < R < C < H (see Examples (93a-93g)).

(b) Z < Z[i] (see Example 〈93f〉).

(c) If n ∈ N, then nZ is a subring of Z.

(d) For any n ∈ N, Mn(Z) < Mn(Q) < Mn(R) < Mn(C) < Mn(H) (see Examples
(96b-96e)).

In general, if S is a subring of R, then Mn(S) is a subring of Mn(R) (see Example
〈96f〉.

(e) R[x] < Cω(R) < C∞(R) < . . . < C3(R) < C2(R) < C1(R) < C(R) < RR (see
Examples (97a), (3f- 3h), (98a), (99a), and (100c).
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(f) Z[x] < Q[x] < R[x] < C[x] (see Examples (98a-98d)).

In general, if S is a subring of R, then S[x] is a subring of R[x] (see Example 〈98f〉).
(Exercise 67).

(g) R[x] < R[[x]]. (Examples (98a) and (99c)).

More generally, for any ring,R[x] < R[[x]] (Examples (98f) and (99d)) (Exercise 68).

(h) C[[x]] < C((x)). (Examples (99c) and (99f)).

More generally, for any ring,R[[x]] < R((x)). (Examples (99d) and (99g)) (Exercise 69).

7.5 Units and Fields
Galois

Prerequisites: §7.1

We have seen that, in a general ring, not all elements have multiplicative inverses. A unit
of R is an element with a multiplicative inverse. The set of all units of R is denoted R×.

A field is a commutative ring R such that all nonzero elements of R are units. In other
words: R× = R \ {0}.

Example 105:

(a) Z is not a field: the only units of Z are 1 and −1.

(b) Q and R are fields. If r 6= 0, then it is a unit, with multiplicative inverse 1/r.

(c) C is a field; if x+yi 6= 0, then it is a unit, with multiplicative inverse
x− yi
x2 + y2

(Exercise 70).

(d) H is not commutative, so it can’t be a field. However, H ‘wants’ to be a field, because
every nonzero element is a unit (Exercise 71). We say that H is a division ring.

(e) LetR =Mn(R) from Example 〈96b〉. The set of units ofMn(R) is the set of all invertible
n× n matrices. In other words, M×

n (R) = GLn [R].

(f) Let R = R[x] from Example 〈98a〉. The units of R[x] are just the nonzero constant
polynomials —that is, polynomials of the form: p(x) = p0 + 0x+ 0x2 + . . ., where p0 6= 0.
Thus, R[x]× is identical to R×. Thus R[x] is not a field.

(g) Let R be any ring, and consider R[x] from Example 〈98f〉. The units of R[x] are just the
unit constant polynomials —that is, polynomials of the form: p(x) = p0 + 0x+ 0x2 + . . .,
where p0 ∈ R×. Thus, R[x]× is identical to R×, and thus, R[x] is never itself a field.
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(h) LetR = C(R) from Example 〈97a〉. An element of C(R) has a multiplicative inverse if and
only if f is nonzero everywhere; in this case, the inverse of f is the function g(x) = 1

f(x)
.

The same holds for R = Ck(R) for any 1 ≤ k ≤ ∞ (see Examples (3f-3h)).

(i) Let R = Cω(U; C̄), as in Example (99e). Then R is a field: if f is a nonzero meromorphic
function, and g(x) = 1

f(x)
, then g is also meromorphic. The zeros of f become the poles

of g and vice versa (Exercise 72 Verify these claims.)

(j) Let F be a field, and let R = F((x)) be the ring of formal Laurent series over F , as in
Example 〈99g〉. Then R is also a field (Exercise 73).

(k) Let R(x) denote the set of rational functions, as in Example 〈98h〉. Then R(x) is a field
(Exercise 74).

Lemma 106 Let R be any ring. Then R× forms a group under multiplication. This is

called the group of units of R.

Proof: Exercise 75 2

Example 107: Z/n×

Let n ∈ N. If k ∈ Z/n then we saw earlier that

(

k has a multiplicative inverse, mod n
)

⇐⇒
(

k is relatively prime to n —ie. gcd(n, k) = 1
)

Thus,
Z/n× =

{

k ∈ Z/n ; k is relatively prime to n
}

.

In particular, it follows that
(

Z/n is a field
)

⇐⇒
(

Z/n× =
{

1̄, 2̄, . . . , n− 1
}

)

⇐⇒
(

n is prime
)

.

7.6 Zero Divisors and Integral Domains
Num.Thr.

Alg.Geo.

Alg.Top.

Prerequisites: §7.5

Let r ∈ R be nonzero. We say r is a zero divisor if there is some element s ∈ R so that
s 6= 0, but r · s = 0.

Example 108:

(a) Let R = Z/10, as in Example 〈93i〉. Let r = 5̄, and let s = 2̄. Then r 6= 0 6= s, but
r · s = 10 = 0̄. Thus, 5̄ and 2̄ are both zero divisors in Z/10.
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Figure 7.4: Zero divisors in the rings C(R), CK(R), and C∞(R).

(b) Let R = Z/n, as in Example 〈93i〉. If n = p · q for any integers p, q > 1, then p and q are
zero divisors, because p · q = 0̄.

(c) Let R = R2 with the product ring structure, as in Example 〈95a〉. Let r = (1, 0) and
s = (0, 1). Then r · s = (0, 0), so r and s are zero divisors.

(d) Let R = M2(R), as in Example 〈96a〉. Let A =
[

1 0
0 0

]

and let B =
[

0 0
0 1

]

. Then

A ·B =
[

0 0
0 0

]

, so A and B are zero-divisors.

(e) Let R = C(R), as in Example 〈97a〉. As shown in Figure 7.4(A), let

f(x) =

{

0 if x ≤ 0
x if x > 0

and g(x) =

{

x if x ≤ 0
0 if x > 0

Then f and g are both nonzero continuous functions, but f · g = 0. Thus, f and g are
zero-divisors.

(f) Let R = Ck(R) for some k ∈ N, as in Example (3g). As shown in Figure 7.4(B), let

f(x) =

{

0 if x ≤ 0
xk+1 if x > 0

and g(x) =

{

xk+1 if x ≤ 0
0 if x > 0

Then f ∈ Ck+1(R) and g ∈ Ck+1(R) are both nonzero, but f · g = 0. Thus, f and g are
zero-divisors.

(g) Let R = C∞(R), as in Example (3h). As shown in Figure 7.4(C), let

f(x) =

{

0 if x ≤ 0
exp

(

− 1
x2

)

if x > 0
and g(x) =

{

exp
(

− 1
x2

)

if x ≤ 0
0 if x > 0

Then f ∈ C∞(R) and g ∈ C∞(R) are both nonzero, but f · g = 0. Thus, f and g are
zero-divisors.
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(h) Let R = R[x], as in Example 〈98a〉. Then R has no zero divisors, because the product of
any nonzero polynomials is nonzero.

(Exercise 76 Verify this. Hint: use formula (7.8) on page 83.)

(i) Let R = Z. Then R has no zero divisors, because the product of any nonzero integers is
nonzero.

An integral domain is a commutative ring with no zero divisors.

Example 109:

(a) Z is an integral domain, by Example 〈108i〉.

(b) Likewise, Q, R, and C are all integral domains.

(c) Any field is an integral domain (Exercise 77).

(d) Z/10 is not an integral domain, because 2̄ and 5̄ are zero divisors, from Example 〈108a〉.

(e) In general, if n = p·q for any integers p, q > 1, then Z/n is not an integral domain, because
p and q are zero divisors, from Example 〈108b〉.

(f) Thus, combining Examples (107), (109c) and (109e), we conclude:

(

Z/n is an integral domain
)

⇐⇒
(

n is prime
)

⇐⇒
(

Z/n is a field
)

.

(g) The polynomial ring R[x] is an integral domain, by Example (108h).

(h) Likewise, Z[x], Q[x], and C[x] are all integral domains.

(i) If R is a commutative ring, then the following are equivalent (Exercise 78):

• R is an integral domain.

• R[x] is an integral domain.

• R[x1, x2, . . . , xn] is an integral domain, for all n ∈ N.

(j) The ring C∞(R) is not an integral domain, by example (108g).

(k) However, Cω(R) is an integral domain. To see this, we combine the following two asser-
tions:

(i) If f, g : R−→R are continuous functions, and f · g = 0, then there exist nonempty
open sets U ⊂ R and V ⊂ R so that f(u) = 0 for all u ∈ U, and g(v) = 0 for all
v ∈ V
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(ii) (The Identity Theorem) If f : R−→R is an analytic function, and there is a
nonempty open set U ⊂ R so that f(u) = 0 for all u ∈ U, then f = 0 every-
where.

Exercise 79 Use (i) and (ii) to show that Cω(R) has no zero divisors.

(The proofs of assertions (i) and (ii) are beyond the scope of these notes.)

(l) Let D be any integral domain, and let R = D[[x]] be the ring of formal power series over
D, as in Example 〈99d〉. Then R is also an integral domain (Exercise 80).

Integral domains are useful because they allow us to ‘cancel’ common factors out of equa-
tions. When confronted with an algebraic expression of the form

r · s = r · t,

we are tempted to ‘cancel’ the r, and conclude that s = t. This ‘cancellation law’ is valid in a
group; we simply multiply both sides by r−1 to get s = r−1rs = r−1rt = t. Cancellation
also works if R is a field, and r is a nonzero element (therefore invertible).

However, the ‘cancellation law’ is not valid in an arbitrary ring. For example, if R = Z/10,
then

2̄ · 3̄ = 6̄ = 2̄ · 8̄ even though 2̄ 6= 8̄.

The problem here is that 2̄ is a zero divisor in Z/10. To obtain a ‘cancellation law’, we must
restrict ourselves to integral domains.

Proposition 110 (Cancellation Law for Integral Domains)

Let R be an integral domain, and let r ∈ R be nonzero. Then for any s, t ∈ R,

(

rs = rt
)

⇐⇒
(

s = t
)

.

Proof:
(

rs = rt
)

⇐⇒
(

rs− rt = 0
)

⇐⇒
(

r(s− t) = 0
)

.

Since r is nonzero, and cannot be a zero divisor, we conclude that (s − t) = 0. In other
words, s = t. 2
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Homomorphisms, Quotients, and Ideals

8.1 Homomorphisms

Prerequisites: §7.1

Consider the ring Z/5 from Example 〈93h〉. For any z ∈ Z, let z ∈ Z/5 be the congruence
class of z, mod 5. The arithmetic of Z/5 has the following convenient property: for any z1, z2 ∈
Z,

z1 + z2 = z1 + z2; and z1 · z2 = z1 · z2. (8.1)

Define the function φ : Z−→Z/5 by φ(z) = z. Then the equations (8.1) can be rewritten:

φ(z1 + z2) = z1 + z2 = z1 + z2 = φ(z1) + φ(z2);

and φ(z1 · z2) = z1 · z2 = z1 · z2 = φ(z1) · φ(z2);

We say that φ is a homomorphism from the ring Z to the ring Z/5.
In general, let R and S be rings. A ring homomorphism is a map φ : R−→S so that,

for any r1, r2 ∈ R

φ(r1 + r2) = φ(r1) + φ(r2) and φ(r1 · r2) = φ(r1) · φ(r2).

Example 111:

(a) Let R = Z and let S = Z/5 (Example 〈93h〉), and define φ : Z−→Z/5 by φ(z) = z. Then
φ is a ring homomorphism.

(b) More generally, let n ∈ N, and define φ : Z−→Z/n by φ(z) = z, where z is the congruence
class of z, modulo n. Then φ is a ring homomorphism.

(c) Let R = R2 be the product ring from Example 〈95a〉, and let S = R. Let π1 : R2−→R
be the projection into the first coordinate. Then π1 is a homomorphism, because for any

103
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(x1, y1) and (x2, y2) in R2,

π1

(

(x1, y1) + (x2, y2)
)

= π1

(

(x1 + x2), (y1 + y2)
)

= x1 + x2

= π1(x1, y1) + π1(x2, y2).

and π1

(

(x1, y1) · (x2, y2)
)

= π1

(

(x1 · x2), (y1 · y2)
)

= x1 · x2

= π1(x1, y1) · π1(x2, y2).

(d) Let R = C(R), as in Example 〈97a〉, and let S = R. Define the evaluation map
ε0 : C(R)−→R by ε0(f) = f(0). Then ε0 is a ring homomorphism, because

ε0(f1 + f2) = (f1 + f2)(0) = f1(0) + f2(0) = ε0(f1) + ε0(f2);

and ε0(f1 · f2) = (f1 · f2)(0) = f1(0) · f2(0) = ε0(f1) · ε0(f2);

(e) More generally, let r ∈ R be any fixed real number, and define the evaluation map
εr : C(R)−→R by εr(f) = f(r). Then εr is a ring homomorphism.

(f) Let R = R[x], as in Example 〈98a〉, and let ε0 : R[x]−→R be the evaluation map, as
before. Again, ε0 is a homomorphism.

Observe that, if P (x) = pnx
n + . . .+ p2x

2 + p1x+ p0, then ε0(P ) = p0.

(g) Let S be any ring, and let R = S[x], as in Example (98f). Now define ε0 : S[x]−→S
as follows: If P (x) = pnx

n + . . . + p2x
2 + p1x + p0, then ε0(P ) = p0. Then ε0 is a

homomorphism (Exercise 81).

(h) Let −∞ ≤ a < b ≤ ∞, and define the restriction map ρ(a,b) : C(R)−→C(a, b) where
ρ(a,b)(f) is just the restriction of f to a function f

∣

∣

(a,b)
: (a, b)−→R. That is, for any

r ∈ (a, b), f
∣

∣

(a,b)
(r) = f(r), but f

∣

∣

(a,b)
is not defined outside of the domain (a, b). Then

ρ(a,b) is a homomorphism (Exercise 82).

(i) More generally, let X be any topological space and let U ⊂ X be any subspace. Define
the restriction map ρU : C(X)−→C(U) by ρU(f) = f |U . Then ρU is a homomorphism.

(j) Let R =M2(Z) be the ring of 2× 2 integer matrices, as in Example 〈96c〉, and let S =
M2(Z/5) be the ring of 2× 2 matrices with coefficients in Z/5. Define the homomorphism
φ : R−→S by reducing each coefficient mod 5. That is,

φ

[

a b
c d

]

=

[

a b

c d

]

,

where a is the congruence class of a, mod 5, etc. Then φ is a ring homomorphism.
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(k) Let R be any ring with multiplicative identity 1R. There is a natural homomomorphism
φ : Z−→R given by φ(n) = 1R + . . .+ 1R

︸ ︷︷ ︸

n

for any n ∈ N, and φ(−n) = −φ(n).

Indeed, this is the only homomorphism from Z into R. (Exercise 83).

Lemma 112 Let φ : R−→S be a ring homomorphism. Then:

1. φ(0R) = 0S .

2. For any r ∈ R, φ(−r) = −φ(r). If r is a unit, then φ(r−1) = φ(r)−1.

3. φ(R) is a subring of S.

Proof: Exercise 84 2

Let 0S be the zero of the ring S. The kernel of φ is the preimage of 0S :

ker[φ] = φ−1{0} = {r ∈ R ; φ(r) = 0S}.

Example 113:

(a) Define φ : Z−→Z/5 by φ(z) = z, as in Example 〈111a〉. Then

ker(φ) = {z ∈ Z ; z = 0 (mod 5)} = {. . . ,−5, 0, 5, 10, . . .} = 5Z.

(b) More generally, let n ∈ N, and define φ : Z−→Z/n by φ(z) = z, as in Example 〈111b〉.
Then ker(φ) = nZ.

(c) Let π1 : R2−→R be the projection into the first coordinate, as in Example 〈111c〉. Then

ker(φ) =
{

(x, y) ∈ R2 ; x = 0
}

= {(0, y) ; y ∈ R}.

(d) Let r ∈ R, and Let εr : C(R)−→R be as in Example 〈111e〉. Then ker(εr) = {f ∈ C(R) ; f(r) = 0}.

(e) Let ε0 : R[x]−→R be the evaluation map, as in Example 〈111g〉. If P (x) = pnx
n + . . .+

p2x
2 + p1x+ p0, then

(

P ∈ ker(ε0)
)

⇐⇒
(

p0 = 0
)

⇐⇒
(

P (x) = pnx
n + . . .+ p2x

2 + p1x = x · (pnxn−1 + . . .+ p2x
1 + p1)

)

Thus, ker(ε0) = {x · q(x) ; q ∈ R[x] any polynomial}.

(f) Let −∞ ≤ a < b ≤ ∞, let ρ(a,b) : C(R)−→C(a, b) be the restriction map, as in Example
〈111h〉. Then ker(ρ(a,b)) = {f ∈ C(R) ; f(x) = 0 for all x ∈ (a, b)}.

(g) Define the homomorphism φ :M2(Z)−→M2(Z/5) by reducing each coefficient mod 5, as
in Example 〈111j〉. Then ker(φ) consists of matrices whose entries are all multiples of 5.
That is, ker(φ) =M2(5Z). (Exercise 85)
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8.2 (∗) Many Examples of Ring Homomorphisms

Prerequisites: §8.1

[This section contains many examples. It is not necessary to read and understand all these examples right
now; just read a few in order to get your intuititions working. These examples will be referred to throughout
the text.]

A ring monomorphism is a ring homomorphism that is injective (ie. one-to-one).

Example 114: (Ring Monomorphisms)

〈a〉 Define the map ι : Z−→R by ι(z) = z for any z ∈ Z. (In other words, ι transforms
z considered as an element of Z to z considered as an element of R). Then ι is a ring
monomorphism.

〈b〉 More generally, if S is a subring ofR, we define the inclusion map ι : S−→R by ι(s) = s
for any s ∈ S. Then ι is a monomorphism.

〈c〉 Define φ : R−→R[x] as follows: for any r ∈ R, φ(r) is the constant polynomial r+ 0x+
0x2 + . . .. Then φ is a monomorphism.

〈d〉 Define φ : R−→C(R) as follows: for any r ∈ R, φ(r) is the constant function with value
r. Then φ is a monomorphism.

A ring epimorphism is a homomorphism that is surjective (ie. onto).

Example 115: (Ring Epimorphisms)

〈a〉 Let ε0 : R[x]−→R be the evaluation map of Example 〈111g〉. Then ε0 is an epimorphism
(Exercise 86).

〈b〉 Define εi : R[x]−→C by mapping any polynomial p(x) = pnx
n + . . . + p2x

2 + p1x + p0

to the complex number p(i) = pni
n + . . . + p2i

2 + p1i + p0 For example, if p(x) =
3x5 − 7x4 + 2x3 − 3x2 + 4x− 5, then

εi(p) = p(i) = 3(i)− 7(1) + 2(−i)− 3(−1) + 4i− 4 = −8 + 5i

Then εi is an epimorphism (Exercise 87).

〈c〉 Let Z[x] be as in Example 〈98c〉 and let Z[i] be as in Example 〈93f〉. Define εi : Z[x]−→Z[i]
by mapping any polynomial p(x) = pnx

n + . . .+ p1x+ p0 to the complex number p(i) =
pni

n + . . .+ p1i + p0. Then εi is an epimorphism (Exercise 88).

A ring isomorphism is a homomorphism that is bijective (ie. one-to-one and onto).

Example 116: (Ring Isomorphisms)
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〈a〉 Let M2(Z) be the ring of 2 × 2 integer matrices (Example 〈96c〉 on page 80) and let
End [Z2] be the ring of endomorphisms of Z2 (Example 〈101a〉 on page 88).

If M =
[

m1 m2

m3 m4

]

is a matrix in M2(Z), then define endomorphism φM ∈ End [Z2] as

follows: for any element z = (z1, z2) in Z2,

φM(z) =

[

m1 m2

m3 m4

][

z1

z2

]

=

[

m1z1 +m2z2

m3z1 +m4z2

]

The map M 7→ φM is an isomorphism M2(Z) into End [Z2] (Exercise 89).

〈b〉 More generally, let Mn(Z) be the ring of n × n integer matrices and End [Zn] be the
endomorphism ring of Zn, and for any M ∈Mn(Z), let φM ∈ End [Zn] by multiplication-
by-M. Then the map M 7→ φM is an isomorphismMn(Z) into End [Zn] (Exercise 90).

〈c〉 Fix a number N ∈ N. Let R be any ring, and let RN be the product ring from Example
〈95d〉 on page 79. Let N = {1, 2, . . . , N}, and let RN be the set of all functions from N
into R (Example 〈100b〉 on page 88). Define Φ : RN−→RN as follows:

Given any function F ∈ RN , define the N -tuple f = (f1, f2, . . . , fN) by fn = F (n) for all
n ∈ N . Then the map F 7→ f is an isomorphism of RN into RN (Exercise 91).

〈d〉 Let X be a set, and let P(X) be the ring of subsets of X (Example 〈102〉 on page 89).
Let Z/2X be the ring of all functions from X into Z/2 (Example 〈100d〉 on page 88).
Define Φ : Z/2X−→P(X) as follows: for any function f ∈ Z/2X, let Φ(f) be the set
{x ∈ X ; f(x) = 1}. Then Φ is a ring isomorphism (Exercise 92).

〈e〉 Let E =
{[

x y
−y x

]

; x, y ∈ R
}

be the set of all 2 × 2 conformal matrices. Then E is a

subring of M2(R) (Exercise 93).

Define the map φ : C−→E by φ(x + yi) =
[

x y
−y x

]

. Then φ is a ring isomorphism

(Exercise 94).

〈f〉 Cayley’s Theorem for Rings: Any ring with identity is isomorphic to the endomor-
phism ring of some abelian group.

Proof: Let R be any ring with a multiplicative identity. Let ˜R be the additive abelian
group obtained by forgetting the multiplicative structure on R, and just treating R
as a group under addition. If r is any element of R, let r̃ denote the corresponding
element of ˜R.

(For example, if R = C, then ˜R = R2. If z = x+ yi is a complex number, then z̃ = (x, y) ∈ R2).

Let End
[

˜R
]

be the ring of endomorphisms of ˜R from Example 〈101〉 on page 88. There

is a natural homomorphism φ : R−→End
[

˜R
]

, defined as follows: For any r ∈ R, let



108 CHAPTER 8. HOMOMORPHISMS, QUOTIENTS, AND IDEALS

φ(r) = φr be the map φr : ˜R−→ ˜R defined: φr(s̃) = r̃ · s. (Exercise 95 Verify that
this is a homomorphism.)
(For example, if R = C and ˜R = R2, then for any complex number z = x+ yi, φz : R2−→R2 is just
multiplication by the conformal matrix

[

x y
−y x

]

from Example 〈116e〉.)

If E = φ(R), then E is a subring of End
[

˜R
]

, and φ is an isomorphism from R to E .

(Exercise 96 Hint: it is important that R has an identity element.)
(For example, if R = C, and ˜R = R2, then E is just the ring of 2× 2 real-valued conformal matrices,
as in Example 〈116e〉.) 2

Cayley’s theorem for groups says that any group G can be seen as a permutation group; this
is done by letting G act upon itself. Thus, the class of permutation groups are ‘universal’
for groups.

Similarly, Cayley’s theorem for rings says that any ringR can be seen as an endomorphism
ring; again this is done by letting R act upon itself. Thus, the class of endomorphism
rings are ‘universal’ for rings.

8.3 Ideals

Prerequisites: §7.4, §8.1

Consider the set 2Z of all even numbers, and recall:

(a) The sum of any two even numbers is an even number.

(b) The product of any two even numbers is an even number.

(c) If e is even, and n is any other number, then e · n is also even.

Facts (a) and (b) together imply that 2Z is a subring. Fact (c) says that 2Z has an interesting
‘contagious’ property; multiplying any number by an even number makes it even. We say that
2Z is an ideal of Z.

Let R be any ring. An ideal is a subring I < R such that:

For any r ∈ R, and any i ∈ I, r · i ∈ I, and i · r ∈ I.

We then write: “I �R”.

Example 117:

(a) 2Z is an ideal of Z.

(b) More generally, let n ∈ N, and let I = nZ be the set of all multiples of n. Then nZ is
an ideal. To see this, first recall from Example 〈104c〉 that nZ is a subring of Z. Next,
observe that, if i = n · z is any element of nZ, and r ∈ Z is any other integer, then
i · r = n · (z · r) is also in nZ.



8.3. IDEALS 109

(c) Let R = R2 be the product ring from Example 〈95a〉, and let I = {(0, y) ; y ∈ R}. Then
I is an ideal. To see this, first observe that I is a subring: for any (0, y1) and (0, y2) in I,

(0, y1) + (0, y2) = (0, y1 + y2) and (0, y1) · (0, y2) = (0, y1 · y2)

are also in I. If (x, y) is any element of R, and (0, i) ∈ I, then (0, i) · (x, y) = (0, i · y)
is also in I.

(d) Let R = C(R), as in Example 〈97a〉. Fix r ∈ R, and define

Mr = {f ∈ C(R) ; f(r) = 0}.

Then Mr is an ideal. To see this, suppose m1,m2 are elements of Mr, and let f ∈ C(R)
be any other function. Then

(m1 +m2)(r) = m1(r) +m2(r) = 0 + 0 = 0, so m1 +m2 is in Mr.
(m1 ·m2)(r) = m1(r) ·m2(r) = 0 · 0 = 0, so m1 ·m2 is in Mr.

(m1 · f)(r) = m1(r) · f(r) = 0 · f(r) = 0, so m1 · f is in Mr.

(e) Let S be any ring, and let R = S[x], as in Example (98f). Let

I = {x · q(x) ; q ∈ R[x] any polynomial}.

Then I is an ideal (Exercise 97).

(f) Let R = C(R), as in Example 〈97a〉. Let −∞ ≤ a < b ≤ ∞, and define I =
{f ∈ C(R) ; f(x) = 0 for all x ∈ (a, b)}. Then I is an ideal (Exercise 98).

(g) Let R = M2(Z) be the ring of 2 × 2 integer matrices, as in Example 〈96c〉, and let
I =M2(5Z) be the ring of 2× 2 matrices with coefficients in 5Z —for example

[

5 10
−20 15

]

.
Then M2(5Z) is an ideal of M2(Z) (Exercise 99).

(h) More generally, let R be any ring and let I � R. Let Mn(R) be the set of n × n
matrices with coefficients in R, as in Example 〈96f〉. Then Mn(I) is an ideal of Mn(R)
(Exercise 100).

(i) LetR = Z[x] be the ring of polynomials with integer coefficients, as in Example 〈98c〉. Let
5Z[x] be the ring of polynomials with coefficients in 5Z (for example, p(x) = 15x3− 5x =
10). Then 5Z[x] is an ideal of Z[x] (Exercise 101).

(j) More generally, let R be any ring and let I � R. Let R[x] be the set of all formal
polynomials with coefficients in R, as in Example 〈98f〉. Then I[x] is an ideal of R[x]
(Exercise 102).
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(k) Principal ideals in commutative rings: In Example 〈117a〉, we saw that 2Z =
{2z ; z ∈ Z} is an ideal of Z. In Example 〈117e〉, we saw that I = {x · q(x) ; q ∈ R[x]}
is an ideal of R[x]; we could have written this ideal as I = x · R[x].

In general, if R is any commutative ring, and p ∈ R, then the principal ideal generated
by p is the set

pR = {pr ; r ∈ R}. Exercise 103 Show that this is an ideal.

We normally denote this ideal by ‘(p)’. For example, if R = Z, then (3) = 3Z.

(l) Let R = C(R), as in Example 〈97a〉 on page 81, and let I = C0(R), as in Example 〈3k〉.
Then I �R (Exercise 104).

Ideals are to rings as normal subgroups are to groups...

Proposition 118 Let φ : R−→I be a ring homomorphism. Then ker(φ) is an ideal of R.

Proof: Let k1, k2 ∈ ker(φ), and let r ∈ R. Then

φ(k1 + k2) = φ(k1) + φ(k2) = 0 + 0 = 0, so k1 + k2 is in ker(φ).
φ(k1 · k2) = φ(k1) · φ(k2) = 0 · 0 = 0, so k1 · k2 is in ker(φ).
φ(k1 · f) = φ(k1) · φ(f) = 0 · φ(f) = 0, so k1 · f is in ker(φ).

and φ(f · k1) = φ(f) · φ(k1) = φ(f) · 0 = 0, so f · k1 is in ker(φ). 2

Example 119:

(a) Example 〈117a〉 is just the kernel of the homomorphism φ : Z−→Z/2.

(b) Example 〈117b〉 is just the kernel of the homomorphism φ : Z−→Z/n, from Example
(113b).

(c) Example 〈117c〉 is just the kernel of the homomorphism π1 : R2−→R, from Example
〈113c〉

(d) Example 〈117d〉 is the kernel of the evaluation map εr : C(R)−→R, from Example 〈113d〉.

(e) Example 〈117e〉 is the kernel of the evaluation map ε0 : R[x]−→R, from Example (113e).

(f) Example 〈117f〉 is the kernel of the restriction map ρ(a,b) : C(R)−→C(a, b) from Example
〈113f〉.

(g) Example 〈117g〉 is the kernel of the homomorphism φ :M2(Z)−→M2(Z/5) from Example
〈113g〉.

Ideals are ‘allergic’ to multiplicative inverses, in the following sense:
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Lemma 120 Let R be a ring with multiplicative identity 1, and let I be an ideal. The

following are equivalent:

(a) I contains some unit element u.

(b) 1 ∈ I.

(c) I = R.

Proof: Exercise 105 2

Corollary 121 Let F be a field1. Then F contains no proper ideals.

Proof: Let I be any nontrivial ideal of F. Thus, I contains some nonzero element u ∈ F.
But F is a field, so u is a unit, so I = F by the previous theorem. 2

We say that a ring R is simple if it contains no proper ideals. Thus, Corollary 121 can be
reformulated: Every field is a simple ring.

8.4 Quotient Rings

Prerequisites: §8.3 Recommended: §1.4

Let R be a ring. If I < R is any subring, and r ∈ R, then the corresponding coset of I is
the set:

r + I = {r + i ; i ∈ I}.

Example 122:

(a) Let R = Z, and let I = 5Z = {5z ; z ∈ Z} = {. . . ,−5, 0, 5, 10, 15, . . .} as in
Example 〈117b〉. Then 3 + 5Z = {3 + 5z ; z ∈ Z} = {. . . ,−2, 3, 8, 13, 18, . . .}.

(b) Let S and T be rings, and consider the product ring

R = S × T = {(s, t) ; s ∈ S and t ∈ T }. (Example 〈95〉 on page 78)

Let I = {(0S , t) ; t ∈ T } = {0S} × T . Then for any (s, t1) ∈ R,

(s, t1)+I = {(s, t1) + (0S , t2) ; t2 ∈ T } = {(s, t1 + t2) ; t ∈ T } = {(s, t) ; t ∈ T }
= {s} × T .

1...or a division ring.
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Lemma 123 Let R be a ring and let I < R be a subring. For any r ∈ R:

(a)
(

r + I = I
)

⇐⇒
(

r ∈ I
)

.

(b)
(

r ∈ I
)

=⇒
(

r · I ⊂ I
)

. However, the converse is not generally true.

(For example, if I is an ideal, then rI ⊂ I for any r ∈ R.)

Proof: Exercise 106 2

Example 124:

(a) LetR = Z, and let I = 5Z as in Example 〈122a〉. Then 10+5Z = {10 + 5z ; z ∈ Z} =
{. . . , 5, 10, 15, 20, 25, . . .} = 5Z.

(b) Let S and T be groups; let R = S ×T and let I = {0S}× T , as in Example 〈122b〉.
Then for any t ∈ T , (0S , t) + I = {0S} × T = I.

The coset space of I is the set of all its left cosets:

R/I = {(r + S) ; r ∈ R}.

Example 125:

(a) Let R = Z, and let I = 5Z as in Example 〈122a〉. Then

Z
5Z

= {5Z, 1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z}.

(b) Let S and T be rings; let R = S × T , and let I = {0S} × T , as in Example 〈122b〉.
Then

R
I

= {Is ; s ∈ S}, where, for any fixed s ∈ S, Is = {(s, t) ; t ∈ T }.

If A,B ⊂ R are subsets, then their sum is the set

A+ B = {a+ b ; a ∈ A and b ∈ B}, (8.2)

and their product is the set

A · B = {a · b ; a ∈ A and b ∈ B}. (8.3)

Lemma 126 Let R be a ring.
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(a) Subset addition in R is associative and commutative. That is:

for any subsets A,B, C ⊂ R, A+ (B + C) = (A+ B) + C,
and, for any subsets A,B ⊂ R, A+ B = B +A.

(b) Subset multiplication in R is associative and distributive. That is, for any subsets
A,B, C ⊂ R,

A · (B · C) = (A · B) · C,
A · (B + C) = (A · B) + (A · C),

and (B + C) · A = (B · A) + (C · A),

(c) If A < R is a subring of R, then A+A = A and A · A ⊂ A. Furthermore,
(

A is an ideal of R
)

⇐⇒
(

R · A = A = A · R
)

Proof: Exercise 107 2

Proposition 127 LetR be a ring, and let I < R be a subring. The following are equivalent:

(a) I = ker(Φ) for some ring homomorphism Φ : R−→S (where S is some ring).

(b) I �R.

(c) The coset space R/I is a ring under the addition operation (8.2) and multiplication
operation (8.3). Furthermore:

1. If (a+ I) and (b+ I) are cosets of I, then

(a+ I) + (b+ I) = (a+ b) + I, and (a+ I) · (b+ I) = (a · b) + I. (8.4)

2. Define π : R−→R/I by: π(r) = r + I. Then π is a ring epimorphism, and
ker(π) = I.

Proof: ‘(a)=⇒(b)’ This is just Proposition 118 on page 110.

‘(b)=⇒(c)’ Lemma 126 says these operations are associative etc.

Exercise 108 Verify equations (8.4). Check:

The additive identity of R/I is the coset I = (0 + I). (8.5)

Show that the additive inverse of the coset (r + I) is the coset (−r + I). If R has a multiplicative
identity 1, show that R/I has multiplicative identity (1 + I).
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The fact that π is a homomorphism follows immediately from equations (8.4):

π(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = π(a) + π(b),
and π(a · b) = (a · b) + I = (a+ I) · (b+ I) = π(a) · π(b).

Also, for any r ∈ R,

(

r ∈ ker(π)
)

⇐⇒
(

π(r) = 0
)

⇐ by (8.5)⇒
(

(r + I) = I
)

⇐Lem.123(a)⇒
(

r ∈ I
)

.

Hence, ker(π) = I.

‘(c)=⇒(a)’ Let S = R/I, and let Φ = π. 2

The ring R/I is called the quotient ring, and the epimorphism π : R−→R/I is called the
projection map or quotient map.

Example 128: Let R = Z and let I = 5Z. Then R/I is the ring Z/5 of congruence classes,
mod 5.

8.5 The Fundamental Isomorphism Theorems

Prerequisites: §8.4 Recommended: §2.1, §2.2, §2.3

Theorem 129 Fundamental Isomorphism Theorem

Let R and S be rings, and let φ : R−→S be a ring homomorphism, with image T = φ(R) ⊂
S, and kernel K. Then:

(a) T ∼= R/K.

(b) For any r ∈ R with t = φ(r), the φ-preimage of t is the r-coset of K. That is:

φ−1{t} = (r +K).

Proof: Exercise 109 2

Corollary 130 Let R and S be rings, and let φ : R−→S be a ring homomorphism. Then

(

φ is injective
)

⇐⇒
(

ker(φ) = {0}
)

Proof: Exercise 110 2
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Corollary 131 Let F be a field2, and let R be a ring. Let Φ : F−→R be a group homomor-

phism. Then:

either Φ is trivial (ie. Φ(F) = 0)

or Φ is injective, in which case Φ(F) is isomorphic to F.

Proof: Exercise 111 Hint: Combine Corollaries 130 and 121. 2

8.6 The Ring Isomorphism Theorems

Prerequisites: §8.4 Recommended: §2.1, §2.2, §2.3

The three isomorphism theorems for groups have analogies for rings.

Theorem 132 Diamond Isomorphism Theorem

Let R be a ring. Let S < R be a subring, and let I �R be an ideal. Then:

(a) S + I is a subring of R.

(b) I � (S + I).

(c) (S ∩ I) � S.

(d) There is an isomorphism:
S + I
I

∼=
S
S ∩ I

given by the map

Φ :
S + I
I

−→ S
S ∩ I

(s+ i) + I 7→ s+ (S ∩ I)

Proof: Exercise 112 2

Let R be a ring, with ideal I �R and subring J < R. Suppose I < J < R. Then I is
also a ideal of J , and the quotient ring

J
I

= {j + I ; j ∈ J }

is a subset of the quotient ring
R
I

= {r + I ; r ∈ R}.

2...or any simple ring, for that matter.
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Theorem 133 Chain Isomorphism Theorem

Let R be a ring, with ideals I �R and J �R. Suppose I < J . Then:

(a)
J
I

is a ideal of
R
I

.

(b) There is an isomorphism
(R/I)

(J /I)
∼=

R
J

.

(c) Use ‘bar’ notation to denote elements of R/I. Thus, (r + I) = r, J /I = J ,

R/I = R, and
R/I
J /I

= R/J . Then the isomorphism Φ : R/J−→R/J is defined:

Φ
(

r + J
)

= r + J .

Proof: Exercise 113 2

Theorem 134 Lattice Isomorphism Theorem

Let R be a ring and let I �R be an ideal. Let R = R/I. Let L(R) be the subring lattice
of R, and let LI(R) be the ‘fragment’ of L(R) consisting of all subrings which contain I. That
is:

LI(R) = {A < R ; I < A}.

Then there is an order-preserving bijection from LI(R) into L(R), given:

LI(R) 3 A 7→ A ∈ L(R).

Furthermore, for any A,B, C,D ∈ LI(R),

(a)
(

A < B
)

⇐⇒
(

A < B
)

.

(b) C ∩ D = C ∩ D.

(c)
(

A�R
)

⇐⇒
(

A�R
)

, and in this case, R/A ∼= R/A.

Proof: Exercise 114 2



Chapter 9

Algebraic Geometry

9.1 Algebraic Varieties

Prerequisites: §7.5 Recommended: §7.3.3

Let F be a field –for example, F = Q, R, or C (usually F = C). We refer to the set Fn as
the affine n-space over F (we consider Fn merely as a set of points, not as a vector space or a
ring). If p(x1, . . . , xn) is a polynomial in F[x1,..., xn], then p determines a function p : Fn−→F
in the obvious way.

An (affine) algebraic variety in Fn is a subset V ⊂ Fn which is the set of common zeros
of some collection P ⊂ F[x1,..., xn] of polynomials. That is:

V = V (P) = {f ∈ Fn ; p(f) = 0 for all p ∈ P}.

Example 135: Real Algebraic Varieties

In each of the following examples, let F = R.

(a) Circles: Consider the singleton set P = {p(x, y)}, where p(x, y) = x2 + y2 − 1. Then

V (P) =
{

(x, y) ∈ R2 ; p(x, y) = 0
}

=
{

(x, y) ∈ R2 ; x2 + y2 = 1
}

is the circle about the origin of radius 1, which we denote S1 (Figure 9.1A).

(b) Ellipses: Let P = {p(x, y)}, where now, p(x, y) = (x/5)2 + (y/2)2 − 1. Then

V (P) =
{

(x, y) ∈ R2 ; p(x, y) = 0
}

=
{

(x, y) ∈ R2 ; (x/5)2 + (y/2)2 = 1
}

is an ellipse about the origin with minor axis 2 and major axis 5 (Figure 9.1B).

(c) Spheres: Let P = {p(x1, . . . , xn)}, where p(x1, . . . , xn) = x2
1 + . . .+ x2

n − 1. Then

V (P) = {x ∈ Rn ; p(x) = 0} =
{

x ∈ R2 ; x2
1 + . . .+ xn = 1

}

is the (n − 1)-dimensional sphere about the origin of radius 1, which we denote Sn−1

(Figure 9.1C).

117
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2

5

1

(A) (B) (D) (F)

(C) (E)

Figure 9.1: Some algebraic varieties

(d) Planes: Let P = {`(x, y, z)}, where `(x, y, z) = 3x− 2y − z. Then

V (P) =
{

(x, y, z) ∈ R3 ; `(x, y, z) = 0
}

=
{

(x, y, z) ∈ R2 ; 3x− 2y − z = 0
}

is the plane through the origin, orthogonal to the vector (3,−2,−1) (Figure 9.1D).

(e) Torii: Let P = {p(w, x, y, z), q(w, x, y, z)}, where p(w, x, y, z) = w2 + x2 − 1 and
q(w, x, y, z) = y2 + z2 − 1. Then

V (P) =
{

(w, x, y, z) ∈ R4 ; p(w, x, y, z) = 0 = q(w, x, y, z)
}

=
{

(w, x, y, z) ∈ R2 ; w2 + x2 = 1 = y2 + z2
}

is the 2-dimensional torus, which we denote T2 (Figure 9.1E).

(f) X: Let P = {p(x, y), where p(x, y) = x2 − y2 = (x+ y) · (x− y). Then

V (P) =
{

(x, y) ∈ R2 ; x2 − y2 = 0
}

=
{

(x, y) ∈ R2 ; x = ±y
}

is two diagonal lines which cross to make an ‘X’ shape (Figure 9.1F).

Example 136: Algebraic Groups

An algebraic group is an algebraic variety with a natural group structure. We will not
give a formal definition now, but instead provide some simple examples.

(a) The special linear group SL 2 [R]: LetM2(R) be the set of 2×2 real matrices. Iden-

tify M2(R) with R4 in the obvious way, so that a 2× 2 matrix is written
[

w x
y z

]

. and let
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P = {d(w, x, y, z)}, where d(w, x, y, z) = wz − yx− 1 = det
[

w x
y z

]

− 1. Then

V ({d}) =

{[

w x

y z

]

∈M2(R) ; d(w, x, y, z) = 0

}

=

{[

w x

y z

]

∈M2(R) ; det

[

w x

y z

]

= 1

}

is the special linear group of 2× 2 matrices, which we denote SL 2 [R].

(b) The special linear group SLn [R]: Now considerMn(R), which we identify withRn×n
in the obvious way. It is left as an exercise to check that the determinant function

det : Mn(R)−→R is a polynomial. Thus, the function d(M) = det(M) − 1 is also a
polynomial, and thus, the n× n special linear group

SLn [R] = {M ∈Mn(R) ; d(M) = 0}

is an algebraic variety.

(c) The orthogonal group O2(R): Again, consider M2(R), and now let P = {p, q, r, s},
where

p(w, x, y, z) = w2 + x2 − 1; q(w, x, y, z) = wy + xz;
r(w, x, y, z) = yw + zx; and s(w, x, y, z) = y2 + z2 − 1.

Then

V ({p, q, r, s}) =

{[

w x
y z

]

∈M2(R) ;
p(w, x, y, z) = q(w, x, y, z) = 0
r(w, x, y, z) = s(w, x, y, z) = 0

}

=

{[

w x
y z

]

∈M2(R) ;

[

w x
y z

]

·
[

w y
x z

]

=

[

1 0
0 1

]}

=

{

[

w x
y z

]

∈M2(R) ;

[

w x
y z

]−1

=

[

w y
x z

]

}

is the orthogonal group of 2× 2 matrices, which we denote O2(R).

(d) The orthogonal group On(R): In a similar fashion, we can formulate a set of n2 poly-
nomials {p11, . . . , pnn} on Mn(R) so that

V (P) = {M ∈Mn(R) ; pij(M) = 0 for all i, j} =
{

M ∈Mn(R) ; M−1 = Mt
}

is the orthogonal group of n × n matrices, which we denote On(R). The details are
Exercise 115 .
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(e) The special orthogonal group SO 2 [R] Let P = {p, q, r, s, d}, where p, q, r and s are
as in Example (c), and d is as in Example (a). Then

V ({p, q, r, s, d}) = SL 2 [R] ∩O2(R) = SO 2 [R]

is the special orthogonal group of 2× 2 matrices.

Example 137: The Fermat Varieties

Let F = Q, and let pn(x, y, z) = xn + yn − zn. Clearly, pn(0, 0, 0) = 0. Fermat’s famous
Last Theorem states:

For any n ≥ 3, there exist no nonzero x, y, z ∈ Z so that pn(x, y, z) = 0.

This is actually equivalent to the (apparently stronger) statement:

For any n ≥ 3, there exist no nonzero x, y, z ∈ Q so that pn(x, y, z) = 0.

To see this, suppose that x = x1

x2
, y = y1

y2
, and z = z1

z2
are rational numbers, and let L be

the lowest common multiple of the denominators x2, y2 and z2. Then X = Lx, Y = Ly, and
Z = Lz are integers, and

(

xn + yn = zn
)

⇐⇒
(

Lnxn + Lnyn = Lnzn
)

⇐⇒
(

Xn + Y n = Zn
)

.

Hence, any rational solution to Fermat’s equation yields an integer solution. Conversely, any
integer solution to Fermat’s equation yields a rational solution, because integers are rational
numbers.

Hence, if we define the rational algebraic variety

Vn =
{

(x, y, z) ∈ Q3 ; xn + yn = zn
}

,

then Fermat’s Last Theorem can be reformulated: “Vn = {(0, 0, 0)}” which is a statement of
algebraic geometry.

Many other Diophantine problems can be translated into algebraic geometry in this way.
Thus, there is a close relationship between number theory and algebraic geometry.

Example 138: Riemann Surfaces

Let F = C. A Riemann surface is an algebraic variety in C2 determined by the solutions
to a single polynomial equation p(x, y) = 0. For example:

(a) The graph of a function: Let q : C−→C be a polynomial function (say, q(x) =
x2), and define p(x, y) = y − q(x). Then

V ({p}) =
{

(x, y) ∈ C2 ; p(x, y) = 0
}

=
{

(x, y) ∈ C2 ; y = q(x)
}
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is the graph of the function q. For example, if q(x) = x2, then

V2 =
{

(x, x2) ; x ∈ C
}

.

Observe that there is a natural bijection π : V−→C given by π(x, y) = x. Thus, V can
be seen as a sort of ‘deformation’ of the complex plane.

(b) The graph of a branched function: The complex square root function
√
• has two

‘branches’, each of which constitutes a function defined almost everywhere on the com-
plex plane. To simultaneously visualize both branches, we imagine graphing them both,
to obtain a surface

V1/2 = {(y, √y) ; y ∈ C},
where, for any y ∈ C, we understand

√
y to represent two distinct values.

The surface V1/2 forms a branched double covering of the complex plane, in the following
sense. Consider the projection map π : V1/2−→C defined π(y,

√
y) = y, and observe

that π is two-to-one everywhere except at (0, 0), where π is one-to-one.

Observe that the Riemann surface V1/2 is actually the same as the Riemann surface V2

from Example (a), just with the coordinates reversed. In other words, we can define a
natural bijection

V2 3 (x, x2) 7→ (y,
√
y) ∈ V1/2

by y = x2.

These examples illustrate an important fact about Riemann surfaces, which we state without
proof:

Let p(x, y) ∈ C[x, y] be a polynomial of degree n. Then the Riemann surface

V =
{

(x, y) ∈ C2 ; p(x, y) = 0
}

is always nonempty, and is a branched n-fold covering of the complex plane.

9.2 The Coordinate Ring

Prerequisites: §9.1, §8.6

Let F be a field and let V ⊂ Fn be an algebraic variety. A coordinate function on V is
the restriction to V of some polynomial function p : Fn−→F. The set of all coordinate functions
on V is called the coordinate ring of V, and denoted Coord (V). That is:

Coord (V) =
{

p|V ; p ∈ F[x1,..., xn]
}

.

If p, q ∈ F[x1,..., xn] are two polynomials such that p(v) = q(v) for all v ∈ V, then p|V and q|V
are really the same function. Hence, elements of Coord (V) can be seen as equivalence classes of

polynomials in F[x1,..., xn], where
(

p ∼ q
)

⇐⇒
(

p(v) = q(v) for all v ∈ V
)

.

Example 139:
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(a) Let V = Fn. Then Coord (Fn) = F[x1,..., xn].

(b) Consider F2, and let P = {p(x, y)}, where p(x, y) = y. Then

V (p) =
{

(x, y) ∈ F2 ; y = 0
}

= {(x, 0) ; x ∈ F}

is just the natural embedding of F into F2. If q(x, y) and r(x, y) are any polynomials in
F[x, y], then

(

q|V = r|V
)

⇐⇒
(

q(v, w) = r(v, w) for all (v, w) ∈ V
)

⇐⇒
(

q(x, 0) = r(x, 0) for all x ∈ F
)

.

(c) Let F = C. Let c = (c1, c2, . . . , cn) be a single point in Cn, and consider the singleton set
V = {c}. Then V = V (p1, p2, . . . , pn), where, for any x = (x1, . . . , xn) in Cn,

p1(x) = (x1 − c1); p2(x) = (x2 − c2); . . . pn(x) = (xn − cn).

If q(x, y) and r(x, y) are any polynomials in C[x, y], then

(

q|V = r|V
)

⇐⇒
(

q(c) = r(c)
)

⇐⇒
(

q(c)− r(c) = 0
)

⇐⇒
(

(q − r) ∈Mc

)

,

where Mc = {f ∈ C[x1,..., xn] ; f(c) = 0} is the maximal ideal from Hilbert’s

Nullstellensatz (p. 149). In other words,
(

q|V = r|V
)

⇐⇒
(

q and r belong to the same coset of Mc

)

.

The annihilator of V is the ideal

Ann (V) = {f ∈ F[x1,..., xn] ; f(v) = 0 for all v ∈ V}. (see §10.7.4)

For example, if V = {c} as in Example 〈139c〉, then Ann (V) = Mc. Example 〈139c〉 then
generalizes as follows:

Proposition 140 Let V ⊂ Fn be an algebraic variety, and let Ann (V) be its annihilator.

There is a natural ring isomorphism Coord (V) ∼=
F[x1,..., xn]

Ann (V)
, given by the map:

Coord (V) 3 p|V 7→
(

p+Ann (V)
)

∈ F[x1,..., xn]

Ann (V)
.
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Proof: Define Φ : F[x1,..., xn]−→Coord (V) by Φ(p) = p|V . Clearly, this is a surjective ring

homomorphism. Thus, the Fundamental Isomorphism Theorem (Theorem ?? on page ??)

says that Coord (V) ∼=
F[x1,..., xn]

ker(Φ)
. It therefore suffices to show that ker(Φ) = Ann (V). To see

this, observe that:
(

p ∈ ker(Φ)
)

⇐⇒
(

Φ(p) = 0
)

⇐⇒
(

p|V = 0
)

⇐⇒
(

For all v ∈ V, p(v) = 0)
)

⇐⇒
(

p ∈ Ann (V)
)

. 2

Recall that a ring R is perfect if R has no nilpotent elements —ie. ∗
√

0R = {0R} (see
§10.7.3).

Corollary 141 Let R be a quotient ring of C[x1,..., xn]. Then

(

R ∼= Coord (V) for some algebraic variety V ⊂ Cn
)

⇐⇒
(

R is perfect.
)

Proof: Suppose R = C[x1,..., xn]/I for some ideal I � C[x1,..., xn]. Let V = V (I) be the
variety induced by I. Then

(

R is a perfect ring
)

⇐Lem.219⇒
(

I is a radical ideal
)

⇐ (Nlstz)⇒
(

I = Ann (V)
)

⇐⇒
(

R ∼= C[x1,...,xn]
Ann(V)

)

⇐Prop.140⇒
(

R ∼= Coord (V)
)

.

Here, (Nlstz) is the ‘Radical’ Nullstellensatz (Theorem 17 on page 174). 2

Corollary 142 There is a natural bijective correspondence:

{

Algebraic varieties in Cn
}

←→
{

Perfect quotient rings of C[x1,..., xn]
}

.

9.3 Morphisms

Prerequisites: §9.2 Recommended: §10.4.1,§10.7.4

If V ⊂ Fn is an algebraic variety, then a (geometric) morphism from V to Fm is a
function Φ : V−→Fm given by

Φ(v) =
(

φ1(v), φ2(v), . . . , φm(v)
)

,

where φ1, φ2, . . . , φm ∈ Coord (V).
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Φ

Figure 9.2: The map Φ(x, y) = (x2 − y2, 2xy, x) transforms a circle into a double-loop.

Ψ

Figure 9.3: The map Ψ(x, y) = (x2, y2) transforms a circle into a diamond.

Example 143: Define Φ : S1−→R3 by Φ(x, y) = (x2 − y2, 2xy, x). This map transforms
the circle into a double-loop in three-dimensional space; see Figure 9.2.

If W ⊂ Fm is another algebraic variety, then a morphism from V to W is a morphism
Φ : V−→Fm such that Φ(V) ⊂W.

Example 144: Let V = S1 = W, and define Φ : S1−→S1 by Φ(x, y) = (x2 − y2, 2xy).
Then Φ is a morphism which wraps the circle twice around itself (Exercise 116 Hint: write
x = cos(θ) and y = sin(θ).). This is the second Legendre polynomial.

Note that the image of variety under a morphism is not necessarily a variety:

Example 145: Let S1 = {(x, y) ∈ R2 ; x2 + y2 = 1} be the unit circle, and define Ψ :
S1−→R2 by Ψ(x, y) = (x2, y2). Then the image Ψ(S1) is the ‘diamond’ {(x, y) ∈ R2 ; |x|+ |y| = 1},
which is not an algebraic variety. See Figure 9.3. (Exercise 117 Check this.)

If Φ : V−→Fm is a morphism, let image (Φ) be the smallest algebraic variety in Fm containing
the image Φ(V). In other words:

image (Φ) =
⋂

W⊂Fm
W a variety

Φ(V)⊂W

W.
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(this is called the Zariski closure of Φ(V)). It follows from Lemma 222 on page 174 that

image (Φ) = V
(

Ann (Φ(V))
)

.

We say that Φ : V−→W is a (geometric) epimorphism if image (V) = W. Note that this
does not necessarily mean Φ is surjective onto W.

Example 146: Let V = R = W, and let Φ(x) = x2. Then Φ(R) = {r ∈ R ; r ≥ 0} is
the positive real line. Thus, the only algebraic variety in R which contains Φ(R) is R itself.
Hence, image (Φ) = R, so Φ is a geometric epimorphism from R to itself, even though Φ is
not surjective.

Note that, even if the morphism Φ is invertible, the inverse function Φ−1 is not necessarily
a morphism:

Example 147: Let V = R = W, and define Φ : R−→R by Φ(x) = x3. Thus, Φ is bijective,
therefore invertible. However, Φ−1(x) = x1/3 is not a geometric morphism (because it is not
a polynomial).

We say that Φ : V−→W is an (geometric) monomorphism if:

1. Φ : V−→W is injective, and

2. If U = Φ(V) ⊂ W, then the inverse map Φ−1 : U−→V is the restriction of some

polynomial function. —ie. Φ−1(u) =
(

ψ1(u), ψ2(u), . . . , ψm(u)
)

for all u ∈ U, where

ψ1, ψ2, . . . , ψn ∈ F[x1, ..., xm] are polynomial functions on Fm.

We say that Φ is a (geometric) isomorphism if:

1. Φ : V−→W is bijective, and

2. The inverse map Φ−1 : W−→V is also a morphism —ie. Φ−1(w) =
(

ψ1(w), ψ2(w), . . . , ψm(w)
)

,

where ψ1, ψ2, . . . , ψn ∈ Coord (W).

We then say that V and W are (geometrically) isomorphic.

Example 148:

(a) Let S1 ⊂ R2 be the unit circle, as in Example 〈135〉(a). Let E ⊂ R2 be the ellipse
with minor axis 2 and major axis 5, as in Example 〈135〉(b). Define Φ : S1−→E by
Φ(x, y) = (5x, 2y) (in other words, φ1(x, y) = 5x and φ2(x, y) = 2y). Then Φ is a
geometric isomorphism, with inverse Φ−1(x, y) = (x

5
, y

2
).
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(b) Let SO 2 [R] ⊂ M2(R) be the special orthogonal group from Example 〈136〉(e), and
let S1 ⊂ R2 be the circle. Define Φ : S1−→SO 2 [R] by

Φ(x, y) =

[

x y
−y x

]

.

Then Φ is a geometric isomorphism (Exercise 118).

Proposition 149 Let V and W be algebraic varieties, and let φ : V−→W be a morphism.

(a) If f : W−→F is a coordinate function, then f ◦φ : V−→F is also a coordinate function.

(b) Define Φ : Coord (W)−→Coord (V) by Φ(f) = f ◦ φ. Then:

1. Φ is a ring homomorphism, and Φ(11Y) = 11X.

2.
(

φ is a geometric monomorphism
)

⇐⇒
(

Φ is a ring epimorphism
)

.

3.
(

φ is a geometric epimorphism
)

⇐⇒
(

Φ is a ring monomorphism
)

.

4.
(

φ is a geometric isomorphism
)

⇐⇒
(

Φ is a ring isomorphism
)

.

(c) (Functorial Property) Suppose U, V and W are algebraic varieties, and that
φ : U−→V and ψ : V−→W are morphisms. Let γ = ψ ◦ φ : U−→W, so that diagram
(A) below commutes.

Define homomorphisms Φ : Coord (V)−→Coord (U), Ψ : Coord (W)−→Coord (V), and

Γ : Coord (W)−→Coord (U) as in part (b). Then Γ = Φ ◦ Ψ. In other words, diagram (B)
commutes:

U V

γ
ψ

W

-φ

HHHHHHHHHHHj ?(A)
=====⇒

Coord (U) Coord (V)

Γ
Ψ

Coord (W)

�

HH
HH

HH
HH

HHY

Φ

6

(B)

Proof: (a) Suppose V ⊂ Fn and W ⊂ Fm. The construction is illustrated by the following
diagram:

V W

Φ(f) = f ◦ φ
f

F

-φ

HHHHHHHHHHHj ?
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By hypothesis, f is a coordinate function —that is, f = p|W , where p ∈ F[x1, ..., xm] is some

polynomial. Likewise, φ(v) =
(

ϕ1(v), . . . , ϕm(v)
)

, where ϕ1, ϕ2, . . . , ϕm ∈ F[x1,..., xn] are

polynomials. Thus, f ◦ φ(v) = p
(

ϕ1(v), . . . , ϕm(v)
)

. It is Exercise 119 to check that

p
(

ϕ1(v), . . . , ϕm(v)
)

is a polynomial.

(b1) Exercise 120 .

(b2) “=⇒” Suppose φ is a monomorphism. Let U = φ(V) ⊂ W. Thus, the map φ−1 :
U−→V is well-defined, and φ−1 = q|U for some polynomial function q : Fm−→Fn.

We want to show that Φ is surjective; hence, given any f ∈ Coord (V), we want some g ∈ Coord (W)
so that Φ(g) = f .

Suppose f = p|W , where p ∈ F[x1, ..., xm]. Let g = (p◦q)|W . Then g is a coordinate function

on W (because p ◦ q is a polynomial), and, for any v ∈ V, we have:

Φ(g)(v) = g ◦ φ(v) = p ◦ q (φ(v))
(∗)

p ◦ φ−1 (φ(v)) = p(v)
(†)

f(v).

Here, (∗) is because φ(v) ∈ U and q|U = φ−1; (†) is because p|V = f .

(b2) “⇐=” Suppose that Φ : Coord (W)−→Coord (V) is surjective.

Claim 1: φ is injective.

Proof: Suppose not; then there exist points v,v′ ∈ V so that φ(v) = w = φ(v′). Now, let
f ∈ Coord (V) be any polynomial such that f(v) 6= f(v′). For example, if v = (v1, . . . , vn)
and v′ = (v′1, . . . , v

′
n), then v and v′ must differ in some coordinate —say v1 6= v′1. Then

let f(x1, . . . , xn) = x1 − v1. Then f(v) = 0 6= f(v′).

I claim there is no function g ∈ Coord (W) such that Φ(g) = f . To see this, observe that, for
any g ∈ Coord (W),

Φ(g)(v) = g
(

φ(v)
)

= g(w) = g
(

φ(v′)
)

= Φ(g)(v′).

Hence, Φ(g)(v) = Φ(g)(v′), whereas f(v) 6= f(v′). Thus, Φ(g) cannot equal f .

Thus, f is not in the image of Φ, contradicting surjectivity. By contradiction, φ must be
injective. ............................................................ 2 [Claim 1]

Now, let U = φ(V), and let φ−1 : U−→V be the inverse function.

Claim 2: φ−1 = q|U for some polynomial function q : Fm−→Fn.

Proof: Let π1 : Fn−→F be projection into the first coordinate; ie. π1(x1, . . . , xn) = x1.
This is clearly a polynomial, so (π1)|V is a coordinate function. Thus, since Φ is surjective,
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there is some element g1 ∈ Coord (W) so that Φ(g1) = (π1)|V . But g1 is the restriction of

some polynomial q1 ∈ F[x1, ..., xm]; hence, we have:

q1 ◦ φ = g1 ◦ φ = (π1)|V .

Likewise, if πk : Fn−→F is projection into the kth coordinate, then there is some polynomial
qk ∈ F[x1, ..., xm] so that

qk ◦ φ = (πk)|V . (9.1)

I claim φ−1 = (q1, . . . , qn). To see this, observe that, for any v = (v1, . . . , vn) ∈ V,

(q1, . . . , qn) ◦ φ(v) =
(

q1 ◦ φ(v), . . . , qn ◦ φ(v)
)

by(9.1)

(

π1(v), . . . , πn(v)
)

= (v1, . . . , vn) = v.

In other words, (q1, . . . , qn) ◦ φ = Id on V. ............................ 2 [Claim 2]

(b3) “=⇒” Suppose φ is an geometric epimorphism (ie. image (φ) = W); we claim Φ
is a ring monomorphism. To prove this, it suffices to show that ker(Φ) = {0}. So, suppose
g ∈ Coord (W) and Φ(g) = 0; we want to show that g ≡ 0 —in other words, that g(w) = 0 for
all w ∈W.

Let V (g) = {w ∈W ; g(w) = 0} be the algebraic variety induced by g.

Claim 3: φ(V) ⊂ V (g).

Proof: If w ∈ φ(V), then there is some v ∈ V so that φ(v) = w. But then g(w) =
g (φ(v)) = Φ(g)(v) = 0 (because Φ(g) = 0). This holds for all w ∈ φ(V), so φ(V) ⊂
V (g). ............................................................... 2 [Claim 3]

Thus, image (φ) ⊂ V (g). But by hypothesis, image (φ) = W; hence V (g) = W, which means
g ≡ 0.

(b3) “⇐=” Suppose φ was not a geometric epimorphism. We claim Φ is not a monomor-
phism —in other words, ker(Φ) 6= {0}.
Since φ is not an epimorphism, it follows that U = image (φ) is a proper subset of W.

Let Ann (W) =
{

p ∈ F[x1, ..., xm] ; p|W ≡ 0
}

be the annihilator of W. It follows:

Claim 4: Ann (W) ( Ann (U).

Proof: Exercise 121 Hint: Apply Lemmas 220 and 222 on page 174 ..... 2 [Claim 4]

So, let p ∈ F[x1, ..., xm] be a polynomial so that p ∈ Ann (U) but p 6∈ Ann (W). Hence, if
g = p|W , then g is a coordinate function, and g 6= 0.

Claim 5: Φ(g) = 0.



9.4. IRREDUCIBLE VARIETIES 129

Proof: Let v ∈ V, and let u = φ(v) ∈ U. Then Φ(g)(v) = g ◦ φ(v) = g(u) = 0,
because g ∈ Ann (U). ................................................. 2 [Claim 5]

Hence, g ∈ ker(Φ) is nonzero, so Φ cannot be a monomorphism.

(b4) Combine (b2) and (b3).

(c) Exercise 122 . 2

Corollary 150 Let V and W be algebraic varieties. Then

(

V and W are geometrically isomorphic
)

⇐⇒
(

Coord (V) and Coord (W) are isomorphic as rings
)

.

Thus, all geometric information about a variety is encoded in its coordinate ring.

Recall that a ring R is perfect if R has no nilpotent elements —ie. ∗
√

0R = {0} (see
§10.7.3). Recall from Corollary 142 on page 123 that every perfect quotient of C[x1,..., xn] is
the coordinate ring of some algebraic variety V ⊂ Cn. It follows:

Corollary 151 There is a natural bijective correspondence:

{

(Geometric) Isomorphism classes
of algebraic varieties in Cn

}

←→
{

(Algebraic) Isomorphism classes of
perfect quotient rings of C[x1,..., xn]

}

.

So, instead of defining complex algebraic geometry as ‘the study of complex algebraic vari-
eties’, we could define it as the study of ‘the study of perfect quotients of complex polynomial
rings, with a geometric interpretation.’

9.4 Irreducible Varieties

Prerequisites: §9.1, §10.5

Let F be a field, and let V ⊂ Fn be an algebraic variety. We say V is irreducible if V
cannot be written as a union of two smaller varieties. In other words, there are no varieties U
and W so that

V = U ∪W.

Example 152:

(a) Let c ∈ Cn be a point. Then the singleton variety V = {c} is irreducible.
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V U W
Figure 9.4: V = U ∪W

(b) As in Example 〈135〉(f), let V = V (p), where p(x, y) = x2 − y2 = (x+ y) · (x− y). Then
V = U ∪W, where

U = V (x+ y) = {(x, y) ∈ R2 ; x = −y},
and W = V (x− y) = {(x, y) ∈ R2 ; x = y}. (See Figure 9.4)

Hence, V is not irreducible.

(c) More generally, suppose that p(x1, . . . , xn) ∈ F[x1,..., xn] is a polynomial which factors:

p(x1, . . . , xn) = q(x1, . . . , xn) · r(x1, . . . , xn)

Then V (p) = V (q) ∪ V (r), so if V (q) and V (r) are both nonempty, then V (p) is not
irreducible.

It appears from Examples 〈152b〉 and 〈152c〉 that irreducibility of a variety is related to
irreducibility of the polynomials which generate it. The precise formulation of this is as follows:

Proposition 153 The following are equivalent:

(a) V is irreducible.

(b) If U and W are varieties such that V ⊂ U ∪W, then either V ⊂ U or V ⊂W.

(c) Ann (V) is a prime ideal in F[x1,..., xn].

(d) Coord (V) is an integral domain.

In particular, if V = V (p) for some p ∈ F[x1,..., xn], then

(

V is irreducible
)

⇐⇒
(

p is irreducible
)

.
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Proof: “(a)=⇒(b)” Suppose V ⊂ U∪W. Recall that the intersection of two varieties is a
variety. Thus, U′ = V∩U is a variety, and so is W′ = V∩W. Not that V = U′ ∪W′. But
V is irreducible, so either U′ = V or W′ = V; in other words, either V ⊂ U or V ⊂W.

“(b)=⇒(a)” Suppose V = U ∪W; then V ⊂ U ∪W, so (b) implies that either V ⊂ U
or V ⊂ W. Suppose that V ⊂ U. But V = U ∪W, so clearly U ⊂ V. Hence, U = V.
(Likewise, if V ⊂W, then V = W.)

We conclude that V cannot be written as a union of two subvarieties; hence it is irreducible.

“(b)=⇒(c)” Suppose f, g ∈ F[x1,..., xn] are polynomials such that f · g ∈ Ann (V). I claim
that either f ∈ Ann (V) or g ∈ Ann (V). To see this observe that

(

(f · g) ∈ Ann (V)
)

⇐⇒
(

V ⊂ V (f · g) = V (f) ∪ V (g).
)

= (b)⇒
(

Either V ⊂ V (f) or V ⊂ V (g).
)

⇐⇒
(

Either f ∈ Ann (V) or g ∈ Ann (V)
)

.

“(c)=⇒(a)” Suppose V is not irreducible; we’ll show that Ann (V) cannot be prime.

Suppose V = U ∪W, but V 6= U and V 6= W. Thus, U ( V, so Lemma 220 on page 173
implies that Ann (V) ( Ann (U). So, find f ∈ Ann (U) with f 6∈ Ann (V).

Likewise W ( V, so Ann (V) ( Ann (W), so find g ∈ Ann (U) with g 6∈ Ann (V). I claim that
(f · g) ∈ Ann (V). To see this, let v ∈ V. Then either v ∈ U (in which case f(v) = 0) or
v ∈W (in which case g(v) = 0). Either way, (f · g)(v) = 0.

Thus, f 6∈ Ann (V) and g 6∈ Ann (V), but (f · g) ∈ Ann (V). Hence, Ann (V) is not a prime ideal.

“(c) ⇐⇒ (d)” Exercise 123 Use Proposition 200 on page 165 and Proposition 140 on
page 122. 2

Corollary 151 on page 129 immediately implies:

Corollary 154 There is a natural bijective correspondence:

{

Isomorphism classes of irreducible
algebraic varieties in Cn

}

←→
{

Isomorphism classes of integral
domain quotients of C[x1,..., xn]

}

.

Irreducible varieties are the basic ‘building blocks’ out of which other varieties are made:

Proposition 155 Any algebraic variety is a union of irreducible varieties.

To be precise: let V ⊂ Fn be an algebraic variety with annihilator Ann (V). Consider the
set of all prime ideals which contain Ann (V):

P = {P � F[x1,..., xn] ; P prime, and Ann (V) ⊂ P}.

For any P ∈ P, the corresponding variety V (P) is irreducible, and V =
⋃

P∈P

V (P).
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Proof: Exercise 124 2

Because of this, algebraic geometers normally restrict their attention to irreducible varieties.
Indeed, in many texts, (eg. [3]), an ‘algebraic variety’ is defined to be irreducible. .



Chapter 10

Ideal Theory

10.1 Principal Ideals and PIDs

Prerequisites: §??

Let R be a commutative ring and let p ∈ R. The principal ideal generated by p is the set

pR = {pr ; r ∈ R}. (see Example 〈117k〉) (10.1)

We normally denote this ideal by ‘(p)’.

Example 156:

(a) If R = Z, then (2) = 2Z = {2z ; z ∈ Z}, the ideal of even numbers from Example 〈117a〉.

(b) If R = R[x], then (x) = xR[x] = {x · q(x) ; q ∈ R[x]}, the ideal from Example 〈117e〉.

If R is a noncommutative ring, then in general, pR is not an ideal. Instead, we define the
principal ideal generated by p to be

RpR = {r1ps1 + r2ps2 + . . .+ rnpsn ; n ∈ N, r1, . . . , rn, s1, . . . , sn ∈ R}. (10.2)

(Exercise 125 Verify this is an ideal.)
Again, we denote this ideal by ‘(p)’. Observe that, if R is commutative, then definition

(10.2) agrees with definition (10.1) (Exercise 126).

A principal ideal domain (PID) is a commutative ring where all ideals are principal
ideals.

Proposition 157 The ring of integers is a principal ideal domain. To be precise:

If I � Z is any ideal, then I = nZ, where n is the minimal positive element in I.

133
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Proof: Let I � Z be an ideal, and let n be the smallest positive integer in I. That is:
n = min(I ∩ N).

Our goal is to show that I = nZ.

Claim 1: nZ ⊂ I.

Proof: Since n ∈ I and I is an ideal, it follows that nz ∈ I for all z ∈ Z. In other words,
any element of nZ is in I. ........................................... 2 [Claim 1]

Claim 2: I ⊂ nZ.

Proof: Suppose not. Find some i ∈ I with i 6∈ nZ. Without loss of generality, we assume
i > 0 (because if i ∈ I, then −i is also in I). Since n is the minimal positive element
of I, we must have n < i. Apply the Division algorithm to write i = qn + r, where
0 < r < n. By hypothesis, i 6∈ nZ, so n doesn’t divide i, so we must have r 6= 0. But then:

• i ∈ I;

• qn ∈ nZ ⊂ I thus, qn ∈ I.

• r = i− qn; thus, r ∈ I.

But r < n, and this is a contradiction, because n is the minimal positive element in I.

By contradiction, no such i can exist; hence I ⊂ (n). .................. 2 [Claim 2]

Claims 1 and 2 together imply that I = nZ. 2

Principal Ideals in Polynomial Rings: The proof of Proposition 157 generalizes readily
to the ring R[x] of polynomials. The key concepts used in the proof of Proposition 157 were

1. The existence of a minimal element in I.

2. The use of the Division Algorithm.

We must generalize these ideas to polynomials. Recall that the degree of a polynomial p(x) is
the highest exponent appearing in p(x) with nonzero coefficient. For example degree (() 5x3 −
7x2+8x+6) = 3. In general, If p(x) = pnx

n+. . .+p1x
1+p0, (where pn 6= 0), then degree (p) = n.

Recall also the the Polynomial Long Division algorithm. Given any polynomials p(x)
and P (x), where degree (P ) ≥ degree (p), we can ‘divide’ P (x) by p(x) to get:

P (x)

p(x)
= q(x) +

r(x)

p(x)
. (10.3)

where degree (r) < degree (p). If we multiply both sides of equation (10.3) by p(x), we get:

P (x) = q(x) · p(x) + r(x).

If the ‘remainder’ polynomial r(x) equals zero, then we say that p(x) divides P (x).
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Proposition 158 The ring R[x] is a principal ideal domain. To be precise:

If I � R[x] is any ideal, then I = (p), where p is a polynomial of minimal degree in I.

Proof: Let I � R[x] be an ideal. Let p be a polynomial of minimal degree in I. That is:

degree (p) = min {degree (q) ; q ∈ I}.

Our goal is to show that I = (p).

Claim 1: (p) ⊂ I.

Proof: Since p ∈ I and I is an ideal, it follows that p · q ∈ I for all q ∈ R[x]. Hence any
element of (p) is also in I. ........................................... 2 [Claim 1]

Claim 2: I ⊂ (p).

Proof: Suppose not. Find some i ∈ I with i 6∈ (p). Since p has minimal degree in I,
we must have degree (p) ≤ degree (i). Now apply Polynomial Long Division to write
i = qp+ r, where 0 < degree (r) < degree (p). By hypothesis, i 6∈ (p), so p doesn’t divide i,
so we must have r 6= 0. But then:

• i ∈ I;

• qp ∈ (p) ⊂ I; thus, qp ∈ I.

• r = i− qp; thus, r ∈ I.

But degree (r) < degree (p), and this is a contradiction, because p has minimal degree in I.

By contradiction, no such i can exist; hence I ⊂ (p). .................. 2 [Claim 2]

Claims 1 and 2 together imply that I = (p). 2

There is nothing special about the real numbers or about R[x]. The notion of polynomial
division generalizes to any field, and yields the following theorem:

Proposition 159 Let F be any field. Then F[x] is a principal ideal domain. To be precise:

If I � F[x] is any ideal, then I = (p), where p is a polynomial of minimal degree in I.

Proof: Exercise 127 Literally just change the symbol ‘R’ to ‘F’ throughout the preceeding
argument 2

Do not get the idea that every polynomial ring is a PID....

Example 160:
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(a) Let R = Z[x] (Example 〈98c〉), and let I be the polynomial generated by the elements 2
and x. That is,

I = {2p(x) + xq(x) ; p(x) ∈ Z[x] and q(x) ∈ Z[x]}.

We claim that I is a nonprincipal ideal.

Claim 1: I is an ideal.

Proof: Exercise 128 ............................................ 2 [Claim 1]

Claim 2: I contains the polynomials 2 and x.

Proof: 2 = 2 · 1 + x · 0, and 2 = 2 · 0 + x · 1. ...................... 2 [Claim 2]

Claim 3: I 6= Z[x].

Proof: We will show that any element in I must have an even constant coefficient.
Hence, I cannot be all of Z[x].

Suppose i(x) ∈ I. Then i(x) = 2p(x) + xq(x) for some p(x), q(x) ∈ Z[x].

If p(x) = pnx
n + . . .+ p1x+ p0, then p(x) = 2pnx

n + . . .+ 2p1x+ 2p0.
If q(x) = qmx

m + . . .+ q1x+ q0, then x · q(x) = qmx
m+1 + . . .+ q1x

2 + q0x.

Hence, if i(x) = i`x
` + . . .+ i1x+ i0, then i0 = 2p0 is even. ....... 2 [Claim 3]

Claim 4: I is not a principal ideal.

Proof: Suppose I = (g) for some polynomial g(x) ∈ Z[x].

Claim 4.1: g must be a constant polynomial —ie. an integer.

Proof: Claim 2 says 2 ∈ I, so g(x) must divide 2. In other words, 2 = g(x) · q(x)
for some polynomial q(x). But then

0 = degree (2) = degree (p(x) · q(x)) = degree (p(x)) + degree (q(x))

Hence, we must have degree (p(x)) = 0 = degree (q(x)). Hence g(x) must be a
constant integer, say g0. ........................................ 2 [Claim 4]

Now, since g0 divides 2, we must have either g0 = 1 or g0 = 2.

Claim 4.2: g0 6= 1.

Proof: Claim 3 says I 6= Z[x]. Hence, 1 is not an element of I, so g 6= 1.
2 [Claim 4.2]

Thus, g0 = 2. But g0 must divide x, and 2 does not divide x in the ring Z[x]. Hence,
no such g could exist. Thus, I is not a principal ideal. ............. 2 [Claim 4]

As a consequence: Z[x] is not a principal ideal domain.
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(b) Let R = R[x, y] (Example 〈98e〉) and let I be the polynomial generated by the elements
x and y. That is,

I = {x · p(x, y) + y · q(x, y) ; p(x, y) ∈ R[x, y] and q(x, y) ∈ R[x, y]}.

We claim that I is a nonprincipal ideal.

Claim 1: I is an ideal.

Claim 2: I contains the polynomials x and y.

Claim 3: I 6= R[x, y]. In particular, every polynomial of I has zero constant term.

The proofs of these claims are Exercise 129 .

Claim 4: I is not a principal ideal.

Proof: To see this, suppose I = (g) for some polynomial g(x, y) ∈ R[x, y]. Then g(x)
must divide x, so it must not contain any terms in y, or any powers of x greater than
x1. Hence, g(x) = g1x + g0 for some g1, g0 ∈ R. If g(x) is to divide x, then we must
have g0 = 0. Hence, g(x, y) = g1 · x.

But g(x, y) must divide y, and x does not divide y in the ring R[x, y]. Hence, no such
g could exist. Thus, I is not a principal ideal. ..................... 2 [Claim 4]

As a consequence: R[x, y] is not a principal ideal domain.

Example 〈160b〉 generalizes to the following

Proposition 161 Let F be a field, and let n ≥ 2. If F[x1, x2, . . . , xn] is the ring of polynomials

over F in n variables, then F[x1, x2, . . . , xn] is not a principal ideal domain.

Proof: Exercise 130 2

10.2 Maximal Ideals

Prerequisites: §8.6, §10.1

Let R be a ring andM�R an ideal. We sayM is a maximal ideal if there exists no ideal
I �R such that M ( I ( R (see Figure 10.1)

Example 162: Let R = Z and consider the principal ideal M = 2Z (Example 〈117a〉). I
claim this ideal is maximal. To see this, suppose there was I � Z such that 2Z ( I ( Z.
Thus, I contains least one odd number o (since I 6⊂ 2Z); say o = 2n + 1. But I also
contains all even numbers (since 2Z ⊂ I); in particular, I contains 2n. Thus, I contains
(2n+ 1)− (2n) = 1. Hence I = Z, by Lemma 120 on page 111.

Hence, any ideal properly containing 2Z must be all of Z. Hence, 2Z is maximal.
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R

M1 M2 M3 M4 M5Maximal

Figure 10.1: A schematic representation of the lattice of ideals of the ring R. The maximal
ideals form the ‘top row’ of the lattice, just below R.

(2) (3) (5) (7) (11)

(4) (6) (15) (35) (77) (121)

Maximal

Figure 10.2: A schematic representation of the lattice of ideals of the ring Z. The maximal
ideals are the principal ideals (2), (3), (5), etc. generated by prime numbers.
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Example 〈162〉 generalizes as follows:

Proposition 163 The maximal ideals of Z are exactly the ideals pZ, where p is prime.

(see Figure 10.2.)

Proof: We want to show:
(

M is a maximal ideal in Z
)

⇐⇒
(

M = pZ for prime p
)

.

Claim 1: Let p be prime, and let M = pZ. Then M is a maximal ideal.

Proof: Recall from Example 〈117b〉 that M is an ideal. We must show it is maximal.

To see this, suppose I�Z was an ideal such that pZ ( I ( Z. Proposition 157 on page 133
says that I = (i), where i is the minimal positive element in I. But ifM⊂ I, that means
in particular that p ∈ I —ie. p ∈ (i), so i must divide p. But p is prime, so....

either: i = p, in which case (i) = (p) ie. I =M.

or: i = 1, in which case (i) = Z ie. I = Z.

It follows that M is maximal. ........................................ 2 [Claim 1]

Claim 2: Let M� Z be a maximal ideal. Then M = pZ for some prime p.

Proof: M is an ideal of Z, so Proposition 157 on page 133 says thatM = pZ, where p is
the smallest positive element in M. Our goal is to show that p is prime.

Suppose p was not prime. Let q be a divisor of p, with 1 < q < p. Let p = q · d.

Claim 2.1: M⊂ qZ.

Proof: Any element ofM has the form pz for some z ∈ Z. But p = q ·d, so pz = q · (dz)
is also an element of qZ. .......................................... 2 [Claim 2.1]

Claim 2.2: qZ 6⊂ M.

Proof: Recall that 1 < q < p. But p is the smallest positive element in M; hence q
cannot be in M; hence qZ 6⊂ M. ................................. 2 [Claim 2.2]

Thus, M ( qZ ( Z, so M cannot be maximal. Contradiction. 2[Claim 2 & Theorem]

10.2.1 Maximal ideals in polynomial rings

The maximal ideal structure of Z is closely mirrored by the maximal ideal structure of polyno-
mial rings....

Example 164: Let R = R[x] and consider the principal idealM = (x) (Example 〈156b〉).
I claim this ideal is maximal. To see this, suppose I �R[x] such that (x) ( I ( R[x]. Thus,
I contains a polynomial p with p 6∈ (x). Hence p(x) = pnx

n + . . .+ p1x+ p0 with p0 6= 0. Let

q(x) = pnx
n−1 + . . .+ p2x+ p1.
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(x) (x-1) (x+1)

R[x]

(x2+1) (x2+2)

(x2) (x2-x) (x2-1) (x4+3x2+2)(x3+x2+x+1) (x4+4x2+4)

Maximal

Figure 10.3: A schematic representation of the lattice of ideals of the ring R[x]. The maximal
ideals are the principal ideals (x), (x− 1), (x2 + 1), etc. generated by irreducible polynomials.

Then x · q(x) is in (x), and thus, in I. But

x · q(x) = pnx
n + . . .+ p2x

2 + p1x = p(x)− p0.

Thus, I contains p(x) − x · q(x) = p0. Thus, I contains p−1
0 · p0 = 1. Thus, I = R[x], by

Lemma 120 on page 111.

Hence, any ideal properly containing (x) must be all of R[x]. So (x) is maximal.

Example 〈164〉 generalizes as follows. Recall that a polynomial p(x) ∈ F [x] is irreducible if
there exists no polynomials q(x) ∈ F [x] which divides p(x), except for q(x) = p(x) or q(x) = 1.

Proposition 165 Let F be a field. The maximal ideals of F [x] are exactly the ideals (p),

where p is an irreducible polynomial (see Figure 10.3).

Proof: We want to show:
(

M is a maximal ideal in F [x]
)

⇐⇒
(

M = (p) for irreducible p
)

.

Claim 1: Let p be an irreducible polynomial, and let M = (p). Then M is a maximal
ideal.

Proof: Recall from Example 〈156b〉 that M is an ideal. We must show it is maximal.

To see this, suppose I �F [x] such that (p) ( I ( F [x]. Proposition 159 on page 135 says
that I = (i), where i is a polynomial of minimal degree in I. But if M ⊂ I, that means
in particular that p ∈ I —ie. p ∈ (i), so i must divide p. But p is irreducible, so...

either: i = p, in which case (i) = (p) ie. I =M.

or: i = 1, in which case (i) = F [x] ie. I = F [x].

It follows that M is maximal. ........................................ 2 [Claim 1]

Claim 2: IfM�F [x] is a maximal ideal, thenM = (p) for some irreducible polynomial p.
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Proof: M is an ideal of F [x], so Proposition 159 on page 135 says that M = (p), where
p is an element in M of minimal degree. Our goal is to show that p is irreducible.

Suppose p was not irreducible. Let q be a divisor of p, with 0 ≤ degree (q) < degree (p).
Let p = q · d.

Claim 2.1: M⊂ (q).

Proof: Any element of M has the form pf for some f ∈ F [x]. But p = q · d, so
pz = q · (df) is also an element of (q). ............................. 2 [Claim 2.1]

Claim 2.2: (q) 6⊂ M.

Proof: Recall that 0 ≤ degree (q) < degree (p). But p has minimal degree in M; hence
q cannot be in M; hence (q) 6⊂ M. ............................... 2 [Claim 2.2]

Thus, M ( (q) ( F [x], so M cannot be maximal. Contradiction. 2[Claim 2 & Theorem]

10.2.2 Maximal Ideals have Simple Quotients

Recall that a ring R is simple if it contains no nontrivial ideals (ie. the only ideals in R are
{0} and R itself). For example, Z/2 is a simple ring. But Z/2 is just the quotient ring Z/2Z
(Example 〈128〉), and as we’ve seen, 2Z is a maximal ideal. This exemplifies a general principle:
If M is a maximal ideal, then R/M is a simple ring. To be precise:

Proposition 166 Let R be a ring and let I �R be an ideal. Then

(

I is maximal
)

⇐⇒
(

R/I is simple
)

.

Proof: Let ˜R = R/I. We apply the Lattice Isomorphism Theorem (Theorem 134 on

page 116). Let J < R be any subring with I < J . Let ˜J = J /I, a subring of ˜R. Then the
Lattice Isomorphism Theorem says

(

J is a proper ideal of R, and I ( J
)

⇐⇒
(

˜J is a proper ideal of ˜R, and ˜J 6= 0
)

.

Hence,
(

I is maximal
)

⇐⇒
(

There are no proper ideals J �R with I ( J
)

⇐⇒
(

There are no proper ideals ˜J � ˜R with J 6= {0}
)

⇐⇒
(

R/I is simple
)

. 2

Recall that the only simple commutative rings are fields. Hence, we have the following:
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Corollary 167 Let R be a commutative ring and let I �R be an ideal. Then

(

I is maximal
)

⇐⇒
(

R/I is a field
)

.

An equivalent formulation of Corollary 167 is:

Corollary 168 Let R be a commutative ring and let F be a field.

(a) If φ : R−→F is an epimorphism, then ker(φ) is a maximal ideal.

(b) All maximal ideals of R arise in this fashion. 2

Example 169:

(a) LetR = R[x], and consider the principal ideal (x) = {x · q(x) ; q ∈ R[x] any polynomial}.
We already saw (Example 〈164〉) that (x) is a maximal ideal in R[x], but now we can
provide a second proof.

Recall the evaluation homomorphism ε0 : R[x]−→R from Example 〈111g〉, defined by
ε0(pnx

n + . . . + p1x + p0) = p0. In Example 〈113e〉, we saw that ker(ε0) = (x). But
image [ε0] = R is a field, so Corollary 168 implies that (x) is a maximal ideal.

(b) Let R = C(R), and let r ∈ R be any fixed number, and consider the ideal Mr =
{f ∈ C(R) ; f(r) = 0} from Example 〈117d〉. I claim Mr is a maximal ideal in C(R).

To see this, let εr : C(R)−→R be the evalutation map from Example 〈111e〉, defined by
εr(f) = f(r). In Example 〈113d〉, we saw that ker(εr) = Mr. But image [εr] = R is a
field, so Corollary 168 implies that Mr is a maximal ideal.

Thus, every point in R defines a maximal ideal in C(R). We will see in §10.3 that this
correspondence goes in both directions.

(c) Let R = C[x], and let c ∈ C be any complex number, and consider the ideal Mc =
{f ∈ C[x] ; f(c) = 0}. Observe that Mc is the kernel of the evaluation homomorphism
εc : C[x]−→C defined by εc(f) = f(c). Since the image of εc is the field C, it follows that
Mc is maximal in C[x].

Corollary 167 also provides a powerful mechanism for constructing fields....

Proposition 170 Let F be a field, and let p(x) ∈ F [x] be an irreducible polynomial. Then

the quotient ring F [x]/(p) is also a field.

Proof: Proposition 165 says that the principal ideal (p) is maximal in F [x]. Hence, Corollary
167 says that the quotient ring F [x]/(p) is a field. 2

To illustrate, we’ll construct the complex numbers....
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Example 171: The field C is isomorphic to the quotient ring R[x]/(x2 + 1).

Proof: x2 + 1 is irreducible because you can’t factor x2 + 1 in R[x]. Thus, Proposition 170
says that C = R[x]/(x2 + 1) is a field. We want to show that C is isomorphic to C.

For any polynomial p(x) in R[x], let p be the corresponding element in C. In particular, let
j = x.

Claim 1: j is a square root of −1.

Proof: Observe that j2 + 1̄ = x2 + 1̄ = x2 + 1 = 0. Hence, j2 = −1. 2 [Claim 1]

Claim 2: Every element of C can be written in a unique way as r1 + r2j, where r1 and r2

are real numbers.

Proof: Any element of C has the form p(x) for some polynomial p ∈ R[x]. To illustrate,
we’ll use the polynomial p(x) = 8x8 + 7x7 + 6x6 + 5x5 + 4x4 + 3x3 + 2x2 + x+ 1

2
. Observe

p(x) = 8x8 + 7x7 + 6x6 + 5x5 + 4x4 + 3x3 + 2x2 + x+ 1/2

= 8̄x8 + 7̄x7 + 6̄x6 + 5̄x5 + 4̄x4 + 3̄x3 + 2̄x2 + x + 1/2

= 8̄j8 + 7̄j7 + 6̄j6 + 5̄j5 + 4̄j4 + 3̄j3 + 2̄j2 + j + 1/2

Clm.1
8̄(−1̄)4 + 7̄(−1̄)3j + 6̄(−1̄)3 + 5̄(−1̄)2j + 4̄(−1̄)2

+ 3̄(−1̄)j + 2̄(−1̄) + j + 1/2

= 8̄− 7̄j− 6̄ + 5̄j + 4̄− 3̄j− 2̄ + j + 1/2

= (8̄− 6̄ + 4̄− 2̄ + 1/2) + (−7̄ + 5̄− 3̄ + 1̄)j = 1/2 − 4̄j.

The same reduction will clearly work for any polynomial. .............. 2 [Claim 2]

Now, define the map φ : C−→C by φ(r1 + r2i) = r1 + r2j. It is left as Exercise 131 to
verify that this is a ring isomorphism. 2

10.3 The Maximal Spectrum

Prerequisites: §10.2
Alg.Geo.

Let R be a ring. The maximal spectrum of R is the set of all maximal ideals of R:

Spec (R) = {M ; M�R is a maximal ideal}. (see Figure 10.4)

Example 172: Let R = Z. Then Proposition 163 on page 139 says that the maximal ideals
of Z are exactly the principal ideals pZ, where p is prime. In other words,

Spec (Z) = {pZ ; p ∈ N a prime number}
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R

MaxSpec(R)

Figure 10.4: A schematic representation of the maximal spectrum of the ring R.

C[0,1]

Mr r0 1

[0,1]
MaxSpec(C[0,1])

Figure 10.5: A schematic representation of the maximal spectrum of the ring C[0, 1], showing
the bijective correspondence between points in [0, 1] and maximal ideals in C[0, 1].

On of the fundamental concepts of algebraic geometry is the following

Correspondence Principle: If X is a space, and R is a ring of functions over
X, then the maximal ideals of R correspond to the points of X. Hence, Spec (R) is
a sort of ‘image’ of X.

Thus, the maximal spectrum has a natural ‘geometric’ interpretation. The basic idea of
commutative ideal theory is to extend this interpretation to arbitrary rings; given any ring R,
we interpret Spec (R) as a kind of abstract ‘space’, and R as a ring of ‘functions’ on this space.

10.3.1 The Maximal Spectrum of a Continuous Function Ring

Prerequisites: §10.2 Recommended: §A

Our first illustration of the Correspondence Principle is the following:

Proposition 173 Let C[0, 1] be the ring of continuous functions from [0, 1] into R. Then:
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(a) For every r ∈ [0, 1], there is a maximal ideal Mr = {f ∈ C[0, 1] ; f(r) = 0}, which
is the kernel of the evaluation map εr : C[0, 1] 3 f 7→ f(r) ∈ R.

(b) Every maximal ideal of C[0, 1] arises in this fashion.

(c) Thus, there is a natural bijective correspondence [0, 1] ↔ Spec
(

C[0, 1]
)

, defined by

the map r 7→ Mr (see Figure 10.5).

Proof: We have already seen thatMr is a maximal ideal in Example 〈169b〉 (there we were
in the ring C(R), but the argument for C[0, 1] is identical). It remains to show that the map

[0, 1] 3 r 7→ Mr ∈ Spec
(

C[0, 1]
)

is bijective.

Injective: Suppose r, s ∈ [0, 1] with r 6= s. We want to show that Mr 6= Ms. To see
this, consider the continuous function f(x) = |x − r|. Clearly, f ∈ C[0, 1], and f(r) = 0, so
f ∈Mr. On the other hand, f(s) 6= 0, so f 6∈ Ms. Hence, Mr 6=Ms.

Surjective: Let M � C[0, 1] be some maximal ideal; we want to show that M = Mr for
some r ∈ [0, 1]. To do this, for any f ∈M, define

V (f) = {v ∈ [0, 1] ; f(v) = 0}.

Claim 1: V (f) 6= ∅, and is a closed subset of [0, 1].

Proof: Nonempty: Suppose V (f) = ∅. This means that f(x) 6= 0 for all x ∈ [0, 1]. Thus,
f is a unit element of C[0, 1]. To see this, define g(x) = 1

f(x)
. Then g ∈ C[0, 1] also, and

f · g = 11.

But if f is a unit element, thenM = C[0, 1], by Lemma 120 on page 111. By contradiction,
V (f) 6= ∅

Closed: To see that V (f) is closed, suppose that v1, v2, . . . , was a sequence of points in
V (f). Thus, f(vn) = 0 for all n ∈ N. Suppose v = lim

n→∞
vn. Since f is continuous, we have:

f(v) = lim
n→∞

f(vn) = lim
n→∞

0 = 0.

Hence, v ∈ V (f) also. ............................................... 2 [Claim 1]

Claim 2: If f1, f2, . . . , fN ∈M, then
N
⋂

n=1

V (fn) 6= ∅, and is a closed subset of [0, 1].

Proof: Define F (x) = f 2
1 (x) + f2(x)2 + . . . fn(x)2. Then F is also in M (because M is a

subring), so Claim 1 says V (F ) 6= ∅. But V (F ) =
N
⋂

n=1

V (fn) (Exercise 132).

To see that
⋂N
n=1V (fn) is closed, recall that the intersection of any number of closed

subsets is also closed. (Lemma 267 on page 224) ....................... 2 [Claim 2]
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Now, define

V (M) = {v ∈ [0, 1] ; f(v) = 0 for all f ∈M} =
⋂

f∈M

V (f) .

Claim 3: V (M) 6= ∅.

Proof: The interval [0, 1] is compact, so we apply the Finite Intersection Property

(230). Now Claim 3 follow from Claim 2. ............................. 2 [Claim 3]

Now, let x ∈ V (M).

Claim 4: M⊂Mx.

Proof: If f ∈M, then x ∈ V (f); hence f(x) = 0, hence f ∈Mx. ..... 2 [Claim 4]

But M is a maximal ideal, so we conclude that M =Mx. 2

There is nothing special about the interval [0, 1]; the same result holds for any compact1

subset X ⊂ RN :

Proposition 174 Let n ∈ N, and let X ⊂ Rn be a compact subset. Let C(X) be the ring of

continuous functions from X into R. Then:

(a) For every x ∈ X, there is a maximal ideal Mx = {f ∈ C(X) ; f(x) = 0}, which is
the kernel of the evaluation map εx : C(X) 3 f 7→ f(x) ∈ R.

(b) Every maximal ideal of C(X) arises in this fashion.

(c) Thus, there is a natural bijective correspondence X ↔ Spec
(

C(X)
)

, defined by the

map x 7→ Mx.

Proof: Exercise 133 Generalize the proof of Proposition 173 2

It is important that X be compact. Proposition 174 is not true if we let X = R or Rn.

Example 175: Let R = C(R), and let C0(R) be the ring of continuous functions with
compact support from Example 〈3k〉. Then C0(R) is an ideal within C(R) (see Example
〈117l〉), and indeed, a maximal ideal (Exercise 134). However, there is no point r ∈ R such
that C0(R) =Mr. Hence, the Correspondence Principle fails for C(R).

To see how this is related to compactness, note that, in a sense, C0(R) is the set of contin-
uous functions which ‘vanish at infinity’. Metaphorically we could write: “C0(R) = M∞.”
The Correspondence Principle fails because ‘∞’ is not an element of R. The solution to
this problem is to compactify R by adding a ‘point at ∞’. This is called the Stone-Čech
compactification.

1X is compact if X is both closed and bounded in Rn. See Appendix §A.4.



10.3. THE MAXIMAL SPECTRUM 147

We can generalize Proposition 174 much further:

Proposition 176 Let X be a compact metric space, and let C(X) be the ring of continuous

functions from X into R. Then:

(a) For every x ∈ X, there is a maximal ideal Mx = {f ∈ C(X) ; f(x) = 0}, which is
the kernel of the evaluation map εx : C(X) 3 f 7→ f(x) ∈ R.

(b) Every maximal ideal of C(X) arises in this fashion.

(c) Thus, there is a natural bijective correspondence X ↔ Spec
(

C(X)
)

, defined by the

map x 7→ Mx.

Proof: Exercise 135 Hint: Use the fact that metric spaces are regular. 2

The Correspondence Principle also holds if we restrict ourselves to differentiable func-
tions...

Proposition 177 Let X ⊂ Rn be a compact subset of Rn (or let X be a compact differen-

tiable manifold). Let C be one of the following rings of functions from X into R:

C = Ck(X) (for some k ∈ N) or C = C∞(X), or C = Cω(X).

Then:

(a) For every x ∈ X, there is a maximal ideal Mx = {f ∈ C ; f(x) = 0}, which is the
kernel of the evaluation map εx : C 3 f 7→ f(x) ∈ R.

(b) Every maximal ideal of C arises in this fashion.

(c) Thus, there is a natural bijective correspondence X ↔ Spec (C), defined by the map
x 7→ Mx.

Proof: Exercise 136 2
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10.3.2 The Maximal Spectrum of a Polynomial Ring

Most important for classical algebraic geometry is a Correspondence Principle for the ring
of polynomial functions. To make this work, however, we must pass to the ring of complex
polynomials....

Proposition 178 Let C[x] be the ring of complex polynomials. Then:

(a) For every c ∈ C, there is a maximal ideal Mc = {f ∈ C[x] ; f(c) = 0}, which is the
kernel of the evaluation map εc : C[x] 3 f 7→ f(c) ∈ C.

(b) Mc is the principal ideal generated by the linear polynomial `(x) = x− c. That is,

Mc =
{

(x− c) · q(x) ; q(x) ∈ C[x]
}

.

(c) Every maximal ideal of C[x] arises in this fashion.

(d) Thus, there is a natural bijective correspondence C ↔ Spec
(

C[x]
)

, defined by the

map c 7→ Mc.

The proof of Proposition 178 requires the following result, which we state without proof:

Fundamental Theorem of Algebra: Any polynomial in C[x] can be factored into linear
polynomials. In other words, if p(x) ∈ C[x], then there are complex constants c1, c2, . . . , cn ∈ C
(possibly not distinct) so that p(x) = (x− c1) · (x− c2) · · · (x− cn). 2

(The proof of the Fundamental Theorem does not involve the theory of maximal ideals, so
there is no circularity here)

Proof of Proposition 178: (a) This was Example 〈169c〉.
(b) Exercise 137 .

(c) Let M� C[x] be a maximal ideal. The ring C[x] is a principal ideal domain (Proposi-
tion 159 on page 135) soM is the principal ideal generated by some polynomial p(x) ∈ C[x].
Our goal is to show that p(x) = x− c for some c ∈ C.

The Fundamental Theorem of Algebra says that p(x) is divisible by some linear polynomial
`(x) = (x − c). That is, p(x) = (x − c) · q(x) for some polynomial q(x). Thus, p is in the
principal ideal I generated by (x − c). But then M ⊂ I. Since M is maximal, it follows
that M = I —that is, M is the principal ideal generated by (x− c). 2

The generalization of Proposition 178 to polynomials of n variables is one of the most
important theorems in algebraic geometry:
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Theorem 179 Hilbert’s Nullstellensatz (Complex Version)

Let C[x1, . . . , xn] be the ring of complex polynomials in n variables.

(a) For every c ∈ Cn, there is a maximal ideal Mc = {f ∈ C[x1, . . . , xn] ; f(c) = 0},
which is the kernel of the evaluation map εc : C[x1, . . . , xn] 3 f 7→ f(c) ∈ C.

(b) Mc is the ideal generated by the linear polynomials

`1(x) = x1 − c1; `2(x) = x2 − c2; . . . `n(x) = xn − cn;

That is,

Mc =
{

(x1 − c1) · q1(x) + . . . + (xn − cn) · qn(x) ; q1(x), . . . , qn(x) ∈ C[x1, . . . , xn]
}

.

(c) Every maximal ideal of C[x1, . . . , xn] arises in this fashion.

(d) Thus, there is a natural bijective correspondence Cn ↔ Spec
(

C[x1, . . . , xn]
)

, defined

by the map c 7→ Mc.

Proof: (a) Exercise 138 .

(b) Our strategy is to perform a ‘change of coordinates’ on Cn, so that the point c =
(c1, . . . , cn) acts as the ‘origin’. It may therefore be helpful, when first reading this argument,
to pretend that c = (0, 0, . . . , 0).

Claim 1: Let p(x) ∈ C[x1, . . . , xn] be any polynomial. Then p(x) can be written as a
polynomial in the variables (x1 − c1), (x2 − c2), . . . , (xn − cn). In other words, there are
complex coefficients q∗, q1, . . . , qn, q11, . . . , qnn, q111, . . . , qnnn, etc. so that

p(x) = q∗ + q1(x1 − c1) + . . . + qn(xn − cn)

+ q11(x1 − c1)2 + q12(x1 − c1)(x2 − c2) + . . .+ q1n(x1 − c1)(xn − cn)

+ q22(x2 − c2)2 + q23(x2 − c2)(x3 − c3) + . . .+ q2n(x2 − c2)(xn − cn) + . . . +

+ qnn(xn − cn)2 + q111(x1 − c1)3 + q112(x1 − c1)2(x2 − c2) + . . .

Here, q∗ = p(c).

Proof: Exercise 139 Hint: There are two approaches:
Calculus Approach: Compute the Taylor series of the function p around the point c =
(c1, . . . , cn). (The advantage of this approach is that it is simple.)

Purely Algebraic Approach: Expand out the expression on the right hand side and collect
like terms, to yield a system of linear equations for the coefficients q1, q2, . . . in terms of the
coefficients of p. Now solve the resulting system. (The advantage of this approach is that it will
work for any field, not just C.) ......................................... 2 [Claim 1]
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Note that every term on the right hand side —except for the constant q∗ —is divisible by at
least one of the polynomials (x1 − c1), . . . , (xn − cn). Thus, every term except q∗ is in the
ideal generated by (x1 − c1), . . . , (xn − cn). It follows:

(

p ∈Mc

)

⇐⇒
(

p(c) = 0
)

⇐⇒
(

q∗ = 0
)

⇐⇒
(

p is in the ideal generated by (x1 − c1), . . . , (xn − cn)
)

.

Hence, Mc is the ideal generated by (x1 − c1), . . . , (xn − cn).

(c) Let M � C[x1, . . . , xn] be a maximal ideal, and let F = C[x1, . . . , xn]/M be the corre-
sponding quotient field (Corollary 167). Let π : C[x1, . . . , xn]−→F be the quotient map.

Let C[x1] be the ring of polynomials containing only the x1 variable; thus, C[x1] is a subring
of C[x1, . . . , xn]. Let π1 : C[x1]−→F be the restriction of π to C[x1].

Claim 2: ker(π1) ⊂M.

Proof: By construction, M = ker(π). Since π1 is just the restriction of π to the smaller
domain C[x1], it follows that ker(π1) ⊂ ker(π). ........................ 2 [Claim 2]

We want to show that M contains a linear polynomial of the form `(x) = (x1 − c1). By
Claim 2, it will be sufficient to show that ker(π1) contains such a polynomial.

Claim 3: ker(π1) 6= {0}.

Proof: Recall the field of rational functions:

C(x1) =

{

p(x1)

q(x1)
; p, q ∈ C[x1]

}

(Example 〈98h〉 on page 84)

Claim 3.1: If ker(π1) = {0}, then we can extend π1 to a monomorphism π̃1 : C(x1)−→F .
Thus, F contains an isomorphic copy of the field C(x1).

Proof: Suppose p ∈ C[x1] has nonzero image —ie. π1(p) 6= 0 in F . Since F is a field,
this means that π1(p) has an inverse, which we will denote by 1

π1(p)
.

If ker(π1) = {0}, then π1(p) is invertible for any nonzero polynomial p ∈ C[x1]. Thus,
then we can extend π1 to a map π̃1 : C(x1)−→F as follows:

π̃1

(

p

q

)

=
π1(p)

π2(p)
, for any p, q ∈ C[x1].

Exercise 140 Check that π̃1 is well-defined, and a ring monomorphism. 2 [Claim 3.1]

We will now show that the conclusion of Claim 3.1 is impossible, because C(x1) is ‘too big’
to fit inside of F . To do this, it will be helpful to treat C(x1) and F as complex vector
spaces.
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Recall that C[x1, x2, . . . , xn] is a vector space over the field C of complex numbers. In other
words, if p and q are two polynomials, then p+ q is also a polynomial, and if c ∈ C is any
scalar, then c · p is also a polynomial.

Claim 3.2: C[x1, x2, . . . , xn] is a countable-dimensional complex vector space.

Proof: Consider the monomials xk1
1 x

k2
2 . . . xknn , where k1, . . . , kn ∈ N. Clearly, any

element of C[x1, . . . , xn] can be written as C-linear combination of monomials of this
form. Thus, the (countable) set

{

xk1
1 x

k2
2 . . . xknn ; k1, . . . , kn ∈ N

}

spans C[x1, . . . , xn]
as a complex vector space. ........................................ 2 [Claim 3.2]

It follows that F is also a complex vector space, and π : C[x1, . . . , xn]−→F is a surjective
C-linear map. To be precise: If p, q ∈ C[x1, . . . , xn], let p and q denote the corresponding
elements of F ; then p+ q = p+ q, and, if if c ∈ C is any scalar, then c · p = c · p.
Claim 3.3: F is a countable-dimensional complex vector space.

Proof: Since F is the image ofC[x1, . . . , xn], it follows that dim(F) ≤ dim
(

C[x1, . . . , xn]
)

.

To be more concrete, observe that the (countable) set
{

xk1
1 x

k2
2 . . . xknn ; k1, . . . , kn ∈ N

}

spans F as a complex vector space. ............................... 2 [Claim 3.3]

Observe that C(x1) can also be treated as a complex vector space (the sum of two rational
functions is rational, etc.).

Claim 3.4: C(x1) is a C-vector space of uncountable dimension.

Proof: For any c ∈ C, consider the rational function ρc(x) =
1

x− c
.

Observe that ρc(x) is finite everywhere except at x = c, and ρc(c) =∞. It follows that,
if c1, . . . , cn are distinct complex numbers, then any finite C-linear combination

a1ρc1 + a2ρc2 + . . . + anρc2 (10.4)

(where a1, . . . , an ∈ C are nonzero complex numbers) is equal to infinity on the set
{c1, . . . , cn}. In particular, the linear combination (10.4) can never be zero. In other
words, the set of rational functions {ρc ; c ∈ C} is linearly independent in C(x). But C
is uncountable, so the set {ρc ; c ∈ C} is also uncountable. Hence, C(x) has uncountable
dimension. ....................................................... 2 [Claim 3.4]

Thus, Claims 3.1, 3.2, and 3.3 together amount to an embedding of an uncountable di-
mensional C-vector space within a countable-dimensional space. This is impossible. By
contradiction, ker(π1) cannot be {0}. ................................. 2 [Claim 3]

Claim 4: ker(π1) contains a linear polynomial `1(x1) = (x1 − c1) for some c1 ∈ C.

Proof: Claim 3 says ker(π1) 6= {0}, so let k(x1) ∈ ker(π1) be some nonzero polynomial. The
Fundamental Theorem of Algebra (p. 148) says that there are constants a1, a2, . . . , am ∈
C so that

k(x1) = (x1 − a1) · (x1 − a2) · · · (x1 − am).
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Hence,

0 = π1(k) = π1(x1 − a1) · π1(x1 − a2) · · ·π1(x1 − am).

Now, F is a field, so it has no zero divisors. So at least one of the factors π1(x1 − a1),
π1(x1−a2), . . . , π1(x1−am) must be zero. By reordering, we can assume π1(x1−a1) = 0.
In other words, the polynomial `(x1) = (x1 − a1) is in ker(π1). so, set c1 = a1, and we’re
done. ............................................................... 2 [Claim 4]

It follows from Claims 2 and 4 that:

Claim 5: M contains a linear polynomial `1(x) = (x1 − c1) for some c1 ∈ C.

Now, we can repeat the argument of Claim 5 for x2, . . . , xn to conclude:

M contains linear polynomials `1(x) = (x1 − c1), `2(x) = (x2 − c2), . . . , `n(x) = (xn − cn),
for some c1, . . . , cn ∈ C.

Thus, M contains the ideal generated by `1, . . . , `n. But from (b), we know that the ideal
generated by `1, . . . , `n is the maximal ideal Mc (where c = (c1, . . . , cn)). Thus M contains
Mc, which means M must equal Mc. 2

Further Reading: A good, elementary introduction to the Nullstellensatz and its relation
to algebraic geometry is [1, §10.7]. More advanced discussions of the maximal spectrum can be
found in [4, §7.5] or [6, II.5]. A thorough development of the subject is [7]. For applications
to algebraic geometry, see [8, 3]. For applications to differential geometry, see [9]. The closely
related spectral theory of abelian Banach algebras is discussed in [2, VII.8]

10.3.3 The Maximal Spectrum of a Coordinate Ring

Prerequisites: §8.6, §9.2, §10.3.2

Recall that the Nullstellensatz2 says there is a bijective correspondence between the
points in Cn and the maximal ideals of C[x1,..., xn] given by

Cn 3 c 7→ Mc ∈ Spec
(

C[x1,..., xn]
)

(where Mc = {p ∈ C[x1,..., xn] ; p(c) = 0}.)

We will now extend this to any complex algebraic variety. If V ⊂ Cn is an algebraic variety,
then we define

SpecV (C[x1,..., xn]) = {Mv ; v ∈ V} ⊂ Spec
(

C[x1,..., xn]
)

.

2p. 149
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Lemma 180 Let V ⊂ Cn, with annihilator Ann (V). Then SpecV (C[x1,..., xn]) is just the

set of maximal ideals in C[x1,..., xn] which contain Ann (V). Formally:

SpecV (C[x1,..., xn]) =
{

M∈ Spec
(

C[x1,..., xn]
)

; Ann (V) ⊂M
}

.

Proof: Exercise 141 2

Corollary 181 Nullstellensatz for Complex Algebraic Varieties

Let V ⊂ Cn be an algebraic variety, with coordinate ring Coord (V). Then there is a natural
bijection between the points in V and the maximal ideals Coord (V), given by

Cn 3 c 7→ Mc ∈ Spec
(

Coord (V)
)

,

where Mc = {f ∈ Coord (V) ; f(c) = 0}.

Proof: Let Ann (V) be the annihilator of V; Recall that Proposition 140 on page 122 says
that

Coord (V) ∼=
C[x1,..., xn]

Ann (V)
.

Hence, there is a natural bijection Spec
(

Coord (V)
)

←→ Spec

(

C[x1,..., xn]

Ann (V)

)

.

The Lattice Isomorphism Theorem (p. 116) yields an order-preserving bijection:

{

ideals of C[x1,..., xn] containing Ann (V)
}

3 I 7→ I ∈
{

ideals of
C[x1,..., xn]

Ann (V)

}

.

It follows that

(

I is maximal in C[x1,..., xn]
)

⇐⇒
(

I is maximal in
C[x1,..., xn]

Ann (V)

)

(because the map is order-preserving). Hence, we get a bijection:

{

M∈ Spec
(

C[x1,..., xn]
)

; Ann (V) ⊂M
}

3M 7→ M ∈ Spec

(

C[x1,..., xn]

Ann (V)

)

But Lemma 180 says
{

M∈ Spec
(

C[x1,..., xn]
)

; Ann (V) ⊂M
}

is just SpecV (C[x1,..., xn]).

Finally, there is a natural bijection between V and SpecV (C[x1,..., xn]), given by v 7→ Mv.
2
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10.4 The Zariski Topology

Prerequisites: §10.3

Let X be some kind of ‘space’ (eg. X = [0, 1] or X = Cn), and letR be some ring of functions
on X (eg. R = C[0, 1], or R = C[x1, . . . , xn]). The Correspondence Principle (page 144)
sets up a natural bijection between the maximal ideals in R and the points in X. We will now
see how we can turn this bijection into a homeomorphism, by endowing the maximal spectrum
of R with a natural topological structure called the Zariski topology.

10.4.1 The Zariski Topology (Continuous Function Rings)

Prerequisites: §10.3.1 Recommended: §A

Throughout this section, let X be one of the following:

1. X = [0, 1].

2. X ⊂ Rn any compact subset.

3. X any compact metric space.

(whichever you’re most comfortable with).

Let C(X) be the ring of continuous functions from X into R. Recall Propositions 173 (for
X = [0, 1]), 174 (for X ⊂ Rn) or 176 (for X a metric space), all of which say:

There is a natural bijective correspondence between the points in X and the maxi-

mal ideals in Spec
(

C(X)
)

, given by x 7→ Mx, whereMx = {f ∈ C(X) ; f(x) = 0}.

We will now see how this bijection also preserves the topological structure of X.

If C ⊂ X is any closed set, then we define a corresponding subset of Spec
(

C(X)
)

as follows:

Zar (C) = {Mc ; c ∈ C}.

We call Zar (C) the Zariski closed set corresponding to C.

The Zariski topology on Spec
(

C(X)
)

is the topology where a subset C ⊂ Spec
(

C(X)
)

is considered closed if and only if C is a Zariski closed set. It follows:

Corollary 182 Endow Spec
(

C(X)
)

with the Zariski topology. Then the map X 3 x 7→

Mx ∈ Spec
(

C(X)
)

is a homeomorphism. 2
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This wouldn’t be very interesting if the Zariski topology on Spec
(

C(X)
)

was merely ob-

tained by ‘importing’ the topology of X in the obvious way. However, we’ll now construct the
Zariski topology using only the intrinsic algebraic structure of C(X).

If S ⊂ C(X) is any subset, then the envelope of S is the set of all maximal ideals in C(X)
which contain S:

Env (S) =
{

M∈ Spec
(

C(X)
)

; S ⊂M
}

.

Let C ⊂ Spec
(

C(X)
)

be some collection of maximal ideals. We call C an envelope if C =

Env (S) for some subset S ⊂ C(X).

Proposition 183 The envelope subsets of Spec
(

C(X)
)

are exactly the Zariski closed sets.

To be specific:

(a) If S ⊂ C(X) is any subset, then Env (S) = Zar
(

V (S)
)

, where

V (S) = {x ∈ X ; f(x) = 0 for all f ∈ S}.

is the variety of S (see §10.7.2). Hence, every envelope is a Zariski closed set.

(b) Conversely, if C ⊂ X is a closed set, and Zar (C) is the corresponding Zariski closed

set, then Zar (C) = Env
(

Ann (C)
)

, where

Ann (C) = {f ∈ C(X) ; f(c) = 0 for all c ∈ C}.

is the annihilator of C (see §10.7.2). Hence, every Zariski closed set is an envelope.

Proof: Exercise 142 2

Thus, Zariski topology on Spec
(

C(X)
)

is a completely algebraic construction. In other

words, if you just encountered R = C(X) as an ‘abstract ring’, and you had no idea that it was
the ring of continuous functions on some space, you could still construct the Zariski topology,
based on purely algebraic information. Thus, the topology of X is completely encoded by the
algebraic structure of C(X).

This encoding extends to morphisms: we will see that continuous functions between spaces
X and Y correspond to ring homomorphisms between C(X) and C(Y).

Proposition 184 Suppose X and Y are compact metric spaces3, and let φ : X−→Y be a

continuous map.

3For example, suppose X = [0, 1] = Y.



156 CHAPTER 10. IDEAL THEORY

(a) If f : Y−→R is continuous, then f ◦ φ : X−→R is also continuous.

Thus, if f ∈ C(Y), then f ◦ φ ∈ C(X).

(b) Define Φ : C(Y)−→C(X) by Φ(f) = f ◦ φ. Then:

1. Φ is a ring homomorphism, and Φ(11Y) = 11X.

2.
(

φ is injective
)

⇐⇒
(

Φ is surjective
)

.

3.
(

φ is surjective
)

⇐⇒
(

Φ is injective
)

.

4.
(

φ is a homeomorphism
)

⇐⇒
(

Φ is a ring isomorphism
)

.

(c) Suppose X, Y and Z are compact metric spaces, and φ : X−→Y and ψ : Y−→Z are
continuous functions. Let γ = ψ ◦ φ : X−→Z, so that diagram (A) below commutes.

Define homomorphisms Φ : C(Y)−→C(X), Ψ : C(Z)−→C(Y), and Γ : C(Z)−→C(X) as
in part (b). Then Γ = Φ ◦Ψ. In other words, diagram (B) commutes:

X Y

γ
ψ

Z

-φ

HHHHHHHHHHHj ?(A)
=====⇒

C(X) C(Y)

Γ
Ψ

C(Z)

�

HH
HH

HH
HH

HHY

Φ

6

(B)

Proof: Exercise 143 Hint: See the proof of Proposition 149 on page 126 2

The map Φ described in Proposition 184(b) is called the pullback of φ, and is usually
writted as φ]. Thus, in part (c), Φ = φ], Ψ = ψ], and Γ = γ], and part (c) could be
reformulated:

(ψ ◦ φ)] = φ] ◦ ψ].

This correspondence also goes the other way:

Proposition 185 Suppose X and Y are compact metric spaces4, and let Φ : C(Y)−→C(X)

be a ring homomorphism, such that Φ(11Y) = 11X.

(a) IfM� C(X) is any maximal ideal in C(X), then Φ−1(M) is a maximal ideal in C(Y).

(b) Thus, we can define a map ˜φ : Spec
(

C(X)
)

−→Spec
(

C(Y)
)

by ˜φ(M) = Φ−1(M).

4For example, suppose X = [0, 1] = Y.
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1. ˜φ is a continuous function from Spec
(

C(X)
)

to Spec
(

C(Y)
)

.

2.
(

Φ is a ring monomorphism
)

⇐⇒
(

˜φ is surjective
)

.

3.
(

Φ is a ring epimorphism
)

⇐⇒
(

˜φ is injective
)

.

4.
(

Φ is a ring isomorphism
)

⇐⇒
(

˜φ is a homeomorphism
)

.

(c) Recall that the map X 3 x 7→ Mx ∈ Spec
(

C(X)
)

is a homeomorphism. Define

φ : X−→Y by φ(x) = y, where y ∈ Y is the unique point such that My = ˜φ(Mx). In
other words, define φ so that the following diagram commutes:

φ
X 3 x −−−−−−−− −→ φ(x) ∈ Y
↑ ↑
↓ ↓

Spec
(

C(X)
)

3Mx −−−−−−−− −→ Φ−1(Mx) ∈ Spec
(

C(Y)
)

˜φ

Then:

1. φ is well-defined, and a continuous function from X to Y.

2.
(

Φ is a ring monomorphism
)

⇐⇒
(

φ is surjective
)

.

3.
(

Φ is a ring epimorphism
)

⇐⇒
(

φ is injective
)

.

4.
(

Φ is a ring isomorphism
)

⇐⇒
(

φ is a homeomorphism
)

.

5. For any f ∈ C(Y), Φ(f) = f ◦ φ. In other words, Φ = φ] is the pullback of
φ, as described in Proposition 184.

(d) Suppose X, Y and Z are compact metric spaces, and that Φ : C(Y)−→C(X) and
Ψ : C(Z)−→C(Y) are ring homomorphisms. Let Γ = Φ ◦ Ψ : C(Z)−→C(X), so that
diagram (A) below commutes.

Define φ : X−→Y, ψ : Y−→Z, and γ : X−→Z as in part (c). Then γ = ψ ◦ φ. In
other words, diagram (B) commutes:

C(X) C(Y)

Γ
Ψ

C(Z)

�

HH
HH

HH
HH

HHY

Φ

6

(A)
=====⇒

X Y

γ
ψ

Z

-φ

HHHHHHHHHHHj ?(B)
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Proof: Exercise 144 2

The map φ described in Proposition 185(c) is called the push forward of Φ, and is usually
writted as Φ[. Thus, in part (d), φ = Φ[, ψ = Ψ[, and γ = Γ[, and part (d) could be
reformulated:

(Ψ ◦ Φ)[ = Φ[ ◦Ψ[.

Part (c5) of Proposition 185 says that the operations of ‘pulling back’ and ‘pushing forward’
are inverse to each other. In other words:

For any continous function φ : X−→Y, and any ring homomorphism Φ : C(Y)−→C(X),

(

Φ = φ]
)

⇐⇒
(

φ = Φ[

)

10.4.2 (∗) The Zariski Topology (for an arbitrary Ring)

Prerequisites: §10.3, §A Recommended: §10.4.1

Let R be a ring. If S ⊂ R is any subset, then the Zariski envelope of S is the set of all
maximal ideals in R which contain S:

Env (S) =
{

M∈ Spec (R) ; S ⊂M
}

Example 186:

(a) If R = Z and S = {5}, then Env (S) = {5Z}. Also, if S = {5, 10, 35}, then Env (S) =
{5Z}. Finally, if S = 5Z, then Env (S) = {5Z}.

(b) If R = Z and S = {12}, then Env (S) = {2Z, 3Z}. If S = {12, 24, 72}, then Env (S) =
{2Z, 3Z}. If S = 12Z, then Env (S) = {2Z, 3Z}.

(c) In general, let R = Z, and suppose n ∈ N has prime factorization: n = pν1
1 · pν2

2 · · · p
νk
k . If

S = {n}, or S = nZ, then Env (S) =
{

(p1), (p2), . . . , (pn)
}

. (Exercise 145)

(d) LetR = R[x], and let p(x) = x2−3x+2 = (x−2)(x−1). If S = {p(x)}, then Env (S) =
{M1, M2}, where M1 = {q(x) ∈ C[x] ; q(1) = 0} and M2 = {q(x) ∈ C[x] ; q(2) = 0}.

(e) Let R = C[x], and suppose p(x) ∈ C[x] factors into a product of linear polynomials:

p(x) = (x− c1)k1 · (x− c2)k2 · · · (x− cn)kn ,

for some c1, . . . , cn ∈ C. If S = {p}, then Env (S) =
{

Mc1 , Mc2 , . . . ,Mcn

}

, where

Mc = {q(x) ∈ C[x] ; q(c) = 0}. (Exercise 146)
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(f) If M�R is a maximal ideal, then Env ({M}) = {M}.

(g) Env (R) = ∅ (because no maximal ideal can contain the whole ring).

(h) Env ({0}) = Spec (R) (because every maximal ideal contains 0).

Proposition 187 Let R be any ring. Then

(a) The map Env (•) is inclusion reversing. In other words, if S ⊂ T , then Env (T ) ⊂
Env (S).

(b) If S ⊂ R and T ⊂ R, then Env (S ∩ T ) = Env (S) ∪ Env (T ).

(c) If S1,S2, . . . is any collection of subsets of R, then Env

(

∞
⋃

n=1

Sn

)

=
∞
⋂

n=1

Env (Sn).

Proof: Exercise 147 2

Let C ⊂ Spec (R) be some collection of maximal ideals. We call C a Zariski subset if
C = Env (S) for some subset S ⊂ R. It follows from Proposition 187:

Corollary 188

(a) ∅ and Spec (R) are Zariski subsets of Spec (R).

(b) If C1 and C2 are Zariski sets, then so is C1 ∪ C2.

(c) The intersection of any number of Zariski subsets is a Zariski subset. 2

In other words, Corollary 188 says that the collection of Zariski subsets obeys all the ax-
ioms required for the closed sets in a topological space (page 226). Hence, we define Zariski
topology on Spec (R) by the condition:

A subset C ⊂ Spec (R) is considered closed if and only if C is a Zariski set.

In §10.4.1, we saw that a ring homomomorphism from C(Y) to C(X) induced a continuous
map from X to Y, and vice versa. (Propositions 184 and 185). Since the Correspondence

Principle identifies X with the maximal spectrum of C(X), we could also interpret this as

a continuous map from Spec
(

C(X)
)

to Spec
(

C(Y)
)

. The same principle holds for arbitrary

rings...

Proposition 189 Let Φ : R−→S be a ring homomorphism, such that Φ(1R) = 1S .

(a) If M� S is any maximal ideal in S, then Φ−1(M) is a maximal ideal in R.
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(b) Define φ : Spec (S)−→Spec (R) by φ(M) = Φ−1(M). Then:

1. φ is a continuous function from Spec (S) to Spec (R).

2.
(

Φ is a ring monomorphism
)

=⇒
(

φ is surjective
)

.

3.
(

Φ is a ring epimorphism
)

=⇒
(

φ is injective
)

.

4.
(

Φ is a ring isomorphism
)

=⇒
(

φ is a homeomorphism
)

.

(c) Suppose Φ : R−→S and Ψ : S−→T are ring homomorphisms. Let Γ = Φ◦Ψ : R−→T ,
so that diagram (A) below commutes.

Define φ : Spec (S)−→Spec (R), ψ : Spec (T )−→Spec (S), and γ : Spec (T )−→Spec (R)
as above. Then γ = ψ ◦ φ. In other words, diagram (B) commutes:

R S

Γ
Ψ

T

-

HHHHHHHHHHHj

Φ

?(A)
=====⇒

Spec (R) Spec (S)

γ
ψ

Spec (T )

�

HH
HH

HH
HH

HHY 6

φ

(B)

Proof: Exercise 148 2

The map φ described in Proposition 189(b) is called the push forward of Φ, and is usually
writted as Φ[. Thus, in part (c), φ = Φ[, ψ = Ψ[, and γ = Γ[, and part (c) could be
reformulated:

(Ψ ◦ Φ)[ = Φ[ ◦Ψ[

10.4.3 (∗) The Zariski Topology (on a field)

Prerequisites: §10.4.2, §10.3.2 Recommended: §10.4.1

In §10.4.1, we saw that that the Zariski topology on the ring of continuous functions C[0, 1]
completely encodes the topology of [0, 1]. What if we instead consider a ring of polynomial
functions?

Let F be a field (eg. either F = R or F = C), and consider the ring F [x] of polynomials
over F . If P ⊂ F [x] is any subset of F [x], then the (algebraic) variety defined by P is the
subset of F defined:

V (P) = {x ∈ F ; p(x) = 0 for all p ∈ P}.

Example 190:
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(a) Suppose F = R and p(x) = x2 − 3x + 2 = (x − 2)(x − 1). If P = {p(x)}, then
V (P) = {1, 2}.

(b) More generally, suppose P = {p(x)} is a singleton set, where p(x) ∈ F [x] is a product of
linear factors:

p(x) = (x− c1)k1 · (x− c2)k2 · · · (x− cn)kn ,

Then V ({p}) = {c1, c2, . . . , cn} is just the set of roots of p(x).

The Zariski topology on F is the topology where a set is consider ‘closed’ if and only if
it is an algebraic variety. That is:

For any C ⊂ F ,
(

C is closed
)

⇐⇒
(

C = V (S) for some subset S ⊂ F [x]
)

.

Suppose that F = C; recall that Proposition 178 says:

There is a natural bijective correspondence between the points in C and the max-

imal ideals in Spec
(

C[x]
)

, given by c 7→ Mc, where Mc = {f ∈ C[x] ; f(c) = 0}.

We’ll now see that this bijection is actually a homeomorphism between Zariski topologies:

Proposition 191

(a) If S ⊂ C[x] is any subset, then Env (S) = {Mc ; c ∈ V (S)}.

(b) Endow C and Spec
(

C[x]
)

with their respective Zariski topologies. Then the map

C 3 c 7→ Mc ∈ Spec
(

C[x]
)

is a homeomorphism.

Proof: Exercise 149 2

The Zariski topology on R or C is much different from the familiar Euclidean topology:

Proposition 192 The Zariski topology on F is just the cofinite topology. That is, for any

C ⊂ F ,
(

C is (Zariski) closed
)

⇐⇒
(

C is finite
)

.

To be precise:

(a) For any S ⊂ C[x], V (S) is a finite subset of C.

(b) Conversely, every finite subset of C arises in this fashion. Given any finite sub-
set {c1, c2, . . . , cn} ⊂ C, let p(x) = (x − c1) · (x − c2) · · · (x − cn). Then V ({p}) =
{c1, c2, . . . , cn}.
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Proof: Exercise 150 2

Thus, the Zariski topology has far fewer closed or open sets than the Euclidean topology.
This has two consequences:

• It is ‘easier’ for a sequence to converge in the Zariski topology. In other words, if the
sequence {x1, x2, . . .} converges to x in the Euclidean topology, then it automatically
converges in the Zariski topology. However, the converse is not true.

• It is ‘harder’ for a function to be continuous in the Zariski topology. If f : F−→F , then

(

f is continuous
)

⇐⇒
(

either f is constant, or f is everywhere finite-to-one.
)

In particular, any polynomial function is continous.

Exercise 151 Verify these statements.

10.4.4 (∗) The Zariski Topology (on affine n-space)

Prerequisites: §10.4.2, §10.3.2 Recommended: §10.4.1, §10.4.3

Suppose X ⊂ Rn was some compact subset. In §10.4.1, we saw that that the Zariski topology
on the ring of continuous functions C(X) completely encodes the topology of X. What if we
instead consider a ring of polynomial functions?

Let F be a field (eg. either F = R or F = C), and consider the ring F [x1, . . . , xn] of
polynomials in n variables over F . If P ⊂ F [x1, . . . , xn] be any subset of F [x1, . . . , xn], then
the (algebraic) variety defined by P is the subset of Fn defined:

V (P) = {x ∈ Fn ; p(x) = 0 for all p ∈ P}

Example 193: Suppose F = R, and consider R[x, y]. Suppose P = {p(x, y)} is a singleton
set, where p(x, y) = x2 + y2 − 1. Then

V ({p}) =
{

(x, y) ∈ R2 ; x2 + y2 = 1
}

is just the circle of radius 1 around zero.

The Zariski topology on Fn is the topology where a set is consider ‘closed’ if and only if
it is an algebraic variety. That is:

For any C ⊂ Fn,
(

C is closed
)

⇐⇒
(

C = V (S) for some subset S ⊂ F [x1, . . . , xn]
)

.

Suppose that F = C; recall that Hilbert’s Nullstellensatz ( Proposition 179) says:
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There is a natural bijection between the points in Cn and the maximal ideals in

Spec
(

C[x1, . . . , xn]
)

, given by c 7→ Mc, whereMc = {f ∈ C[x1, . . . , xn] ; f(c) = 0}.

We’ll now see that this bijection is actually a homeomorphism between Zariski topologies:

Proposition 194

(a) If S ⊂ C[x1, . . . , xn] is any subset, then Env (S) = {Mc ; c ∈ V (S)}.

(b) Endow Cn and Spec
(

C[x1, . . . , xn]
)

with their respective Zariski topologies. Then

the map Cn 3 c 7→ Mc ∈ Spec
(

C[x1, . . . , xn]
)

is a homeomorphism.

Proof: Exercise 152 2

10.4.5 (∗) More about the Zariski Topology

Prerequisites: §10.4.2, §10.7.1 Recommended: §10.4.1

Recall, when constructing the Zariski topology in §10.4.1, we specifically worked with com-
pact spaces. Indeed, we saw in §10.3.1 that the Correspondence Principle actually fails if X
is not compact (Example 175). One reason for this is that the Zariski topology itself is always
compact. Hence, if X was a noncompact space, we could hardly expect a homemomorphism
between X and Spec (C(X))...

Proposition 195 Let R be any ring. Then Spec (R) is compact in the Zariski topology. 2

If X and Y are compact metric spaces, then Propositions 184 and 185 showed that
(

X and Y are homeomorphic
)

⇐⇒
(

C(X) and C(Y) are isomorphic as rings
)

⇐⇒
(

Spec (C(X)) and Spec (C(Y)) are homeomorphic
)

Thus, the maximal spectrum is a complete invariant of the ring C(X). It is natural to wonder
whether a similar conclusion holds for the maximal spectrum of arbitrary rings. Unfortunately,
it does not.

Proposition 196 Let R be a ring, and let J = J 0R be its Jacobson radical (p. 167).

Then Spec (R) is homeomorphic to Spec (R/J ).
To be precise: let φ : R−→R/J be the quotient homomorphism, and let

φ[ : Spec (R/J )−→Spec (R) be its push-forward5. Then φ[ is a homeomorphism. 2

5See Proposition 189 on page 159(b).



164 CHAPTER 10. IDEAL THEORY

Nevertheless, we can relate algebraic properties ofR to topological properties of its maximal
spectrum.

Proposition 197 Suppose R = R1⊕R2⊕ . . .⊕Rn. Then Spec (R) is a disconnected union

of n components:

Spec (R) = Spec (R1) t Spec (R2) t . . . t Spec (Rn) .

Conversely, if Spec (R) is connected, then R cannot be decomposed as a direct sum of two
rings. 2

Further Reading: The Zariski topology is discussed in [4, §7.5]; a thorough development is
[7]. For applications to algebraic geometry, see [8, 3].

10.5 Prime Ideals

Prerequisites: §10.2

Recall from § 8.3 on page 108 that the set 2Z of even numbers is an ideal in the ring Z.
This ideal has an interesting additional property. For any integers n,m ∈ Z

(

n ·m is even
)

⇐⇒
(

either n is even or m is even
)

.

In other words, the product of two odd numbers cannot be even. We say that 2Z is a prime
ideal.

Let R be a ring and let P �R be an ideal. We say P is a prime ideal if, for any r, s ∈ R,
(

r · s is in P
)

⇐⇒
(

either r ∈ P or s ∈ P
)

.

Equivalently, P is prime if its complement R \ P is multiplicatively closed. That is:

for any r, s ∈ R,
(

r 6∈ P and s 6∈ P
)

=⇒
(

r · s 6∈ P
)

.

Prime ideals get their name from their prototypical example: principal ideals of the integers
generated by prime numbers.

Example 198: Let p ∈ N be prime. Then the principal ideal6 pZ = {pz ; z ∈ Z} is a prime
ideal in Z. To see this, suppose n,m ∈ Z. Then:
(

n ·m ∈ pZ
)

⇐⇒
(

p divides n ·m
)

⇐⇒
(

either p divides n or p divides m
)

⇐⇒
(

either n ∈ pZ or m ∈ pZ
)

.

6See Example 〈117b〉 on page 108.
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These are not the only prime ideals in Z. The zero ideal {0} is also prime:

Example 199: Let D be any integral domain. Then the zero ideal {0} is a prime ideal. To

see this, recall that, if d1, d2 ∈ D, then
(

d1 · d2 = 0
)

⇐⇒
(

d1 = 0 or d2 = 0
)

.

Indeed, Example 〈199〉 is prototypical....

Proposition 200 Let R be a commutative ring and let I �R be an ideal. Then

(

I is a prime ideal
)

⇐⇒
(

R/I is an integral domain
)

.

Proof: Let ˜R = R/I. For any elements r and s in R, let the corresponding elements of ˜R
be r̃ and s̃. Then

(

r ∈ I
)

⇐⇒
(

r̃ = ˜0
)

;
(

s ∈ I
)

⇐⇒
(

s̃ = ˜0
)

;

and
(

r · s ∈ I
)

⇐⇒
(

r̃ · s̃ = ˜0
)

.

Hence,
(

I is a prime ideal
)

⇐⇒
(

If r · s ∈ I, then r ∈ I or s ∈ I
)

⇐⇒
(

If r̃ · s̃ = ˜0, then r̃ = ˜0 or s̃ = ˜0
)

⇐⇒
(

R/I has no zero divisors.
)

⇐⇒
(

R/I is an integral domain.
)

2

Corollary 201 Let R be a commutative ring and let I �R be an ideal. Then

(

I is a maximal ideal
)

=⇒
(

I is a prime ideal
)

.

Proof:
(

I is a maximal ideal
)

= (C167)⇒
(

R/I is a field.
)

= (X109c)⇒
(

R/I is an integral domain.
)

= (C200)⇒
(

I is prime.
)

Here, (C167) is by Corollary 167 on page 142; (X109c) is by Example 〈109c〉 on page 101,
and (C200) is by Corollary 200 above. 2

Example 202: (Not all prime ideals are maximal.)

〈a〉 The zero ideal is prime in any integral domain (Example 199), but it is not maximal.
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〈b〉 Let R = Z[x] (Example 〈98c〉). Then the principal ideal (x) is prime, because Z[x]/(x) ∼=
Z is an integral domain. However, (x) is not maximal, because it is contained in the ideal

(2, x) = {2 · p(x) + x · q(x) ; p, q ∈ Z[x]}

(Exercise 153)

An equivalent formulation of Proposition 200 is:

Corollary 203 Let R be a commutative ring and let D be an integral domain

(a) If φ : R−→D is an epimorphism, then ker(φ) is a prime ideal.

(b) All prime ideals of R arise in this fashion. 2

Corollary 204 Let φ : R−→S be a ring homomorphism, and let P �R be an ideal such

that ker(Φ) ⊂ P. Then
(

P is a prime ideal in R
)

⇐⇒
(

Φ(P) is a prime ideal in S
)

.

Proof: Exercise 154 Hint: Combine two applications of Proposition 200 with the Chain

Isomorphism Theorem (Theorem 133 on page 116). 2

Examples 198 and 199 exhaust the prime ideals of Z:

Proposition 205 The prime ideals of Z are exactly:

1. The zero ideal {0}.

2. The principal ideals pZ, where p is prime.

Proof: We’ve already seen that the zero ideal and prime principal ideals are prime. Now we
show there are no others.

Suppose I � Z was a nonzero ideal. Proposition 157 on page 133 says that I = (i), where i
is the minimal positive element in I. Thus, R/I = Z/i. But from Example 〈109f〉 on page
101, we know:

(

Z/i is an integral domain
)

⇐⇒
(

Z/i is a field
)

.

Hence, combining this with Proposition 200, we obtain:

(

(i) is prime
)

⇐⇒
(

(i) is is maximal
)

But Proposition 163 (p. 139) says:
(

(i) is is maximal
)

⇐⇒
(

i is prime.
)

2
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10.6 The Prime Spectrum

Prerequisites: §10.5 Recommended: 10.3
Alg.Geo.

Let R be a ring. The prime spectrum of R is the set of all prime ideals of R:

Spec′ (R) = {P ; P �R is a prime ideal}.

Example 206: Let R = Z. Then Proposition 205 on the facing page says that the prime
ideals of Z are the zero ideal, and the principal ideals pZ, where p is prime. In other words,

Spec′ (Z) = {pZ ; p ∈ N a prime number, or p = 0}.

10.7 Radical, Variety, Annihilator

Let X be some kind of ‘space’ (eg. X = [0, 1] or X = Cn), and let R be some ring of functions
on X (eg. R = C[0, 1], or R = C[x1, . . . , xn]). In this section, we will investigate an interesting
duality between subspaces of X (eg. closed subsets or algebraic varieties), and certain ideals
of R. A key concept linking the two is that of the radical, an algebraic device for ‘closing’ an
ideal.

10.7.1 The Jacobson Radical

Prerequisites: §10.2 Recommended: §10.7.3

Let R be a ring, and let I ⊂ R be any subset (usually, I is an ideal). The Jacobson
radical of I in R is the intersection of all maximal ideals in R which contain I:

J I =
⋂

I⊂M�R
M maximal

M.

Example 207:

(a) If M�R is a maximal ideal, then J M =M.

(b) Let R = Z, and let I = (12). Then J I = (3) ∩ (2) = (6).

(c) More generally, let R = Z, and let i ∈ Z. Suppose i has prime factorization: i =
pι11 · pι22 · · · p

ιk
k . Let I = (i) be the principal ideal generated by i. Then

J I = (p1)∩ (p2)∩ . . .∩ (pn) = (P ), where P = p1 · p2 · · · pn. (Exercise 155)

(d) Let R = R[x], and let p(x) = x3 − 4x2 + 5x − 2 = (x − 1)2 · (x − 2). Let I = (p) be
the principal ideal generated by p(x). LetM1 be the principal ideal (x− 1), andM2 be
the principal ideal (x− 2). Then

J I = M1 ∩M2 = (x2 − 3x+ 2).

Also, observe that M1 = {q(x) ∈ R[x] ; q(1) = 0} and M2 = {q(x) ∈ R[x] ; q(2) = 0}.
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(e) More generally, suppose F is a field and R = F[x]. Let p(x) ∈ F[x] be a product of linear
polynomials:

p(x) = (x− c1)k1 · (x− c2)k2 · · · (x− cn)kn ,

for some c1, . . . , cn ∈ F. Let I = (p) be the principal ideal generated by p(x). Then
J I = Mc1 ∩Mc2 ∩ . . .Mcn , where Mc = (x − c) = {q(x) ∈ F[x] ; q(c) = 0} is
the principal ideal generated by x− c. (Exercise 156)

We say that the ideal I is a Jacobson ideal if J I = I.

Example 208:

(a) Any maximal ideal is a Jacobson ideal.

(b) If J = J I, then J is a Jacobson ideal. (Exercise 157)

The Jacobson radical of the ring R itself is the Jacobson radical of the zero ideal —in
other words, the intersection of all maximal ideals in R:

J 0R =
⋂

M�R
maximal

M.

Example 209:

(a) Let R = Z. Then J 0Z = {0}.

(b) Let R = Z/12. Then J 0Z/12
= {0̄, 6̄}.

(c) More generallly, let R = Z/n, where n has prime factorization: n = pν1
1 · pν2

2 · · · p
νk
k . Then

J 0Z/n = {m ; m = pµ1

1 · · · p
µk
k , where 0 < µ1 < ν1, . . . , 0 < µk < νk}.

(Exercise 158)

Lemma 210 Let I � R, and let Q = R/I be the quotient ring, with quotient map π :

R−→Q. Then J I = π−1
(

J 0Q

)

.

Proof: Exercise 159 2

Further Reading: [4, §4.2].
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10.7.2 Variety and Annihilator (Continuous Function Rings)

Prerequisites: §10.7.1 Recommended: §10.7.4

Throughout the following discussion, let I be one of the following (whichever you are most
comfortable with).

1. I = [0, 1].

2. I ⊂ Rn any compact subset.

3. I any compact metric space.

Consider the ring C(I) of continuous functions from I into R. For any subset X ⊂ I, we
define the annihilator of X to be the set

Ann (X) = {f ∈ C(I) ; f(x) = 0 for all x ∈ X}.

For example, if X = {r} is a singleton set, then

Ann ({r}) = {f ∈ C(I) ; f(r) = 0} = Mr,

where Mr is the maximal ideal from Example 〈169b〉.

Lemma 211

(a) For any X ⊂ I, Ann (X) is an ideal of C(I).

(b) The operation Ann (•) is inclusion-reversing. That is: If X ⊂ Y, then Ann (Y) ⊂
Ann (X).

(c) For any X ⊂ I and Y ⊂ I, Ann (X ∪Y) = Ann (X) ∩ Ann (Y).

Proof: Exercise 160 2

Let S ⊂ C(I) be any subset. Recall that the variety of S is the subset V (S) =
{i ∈ I ; f(i) = 0 for all f ∈ S}.

Lemma 212

(a) For any S ⊂ C(I), V (S) is a closed subset of I.

(b) The operation V (•) is inclusion-reversing. That is: If S ⊂ T , then V (T ) ⊂ V (S).

Proof: Exercise 161 2
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Thus, we have defined two operations:

A :
{

subsets of I
}

−→
{

ideals of C(I)
}

V :
{

subsets of C(I)
}

−→
{

closed subsets of I
}

These operations are ‘inverses’ of each other, in the following sense:

Lemma 213

(a) Let X ⊂ I. Then V
(

Ann (X)
)

= X is the topological closure of X in I.

(b) In particular,
(

X is a closed subset
)

⇐⇒
(

V
(

Ann (X)
)

= X
)

.

(c) Let I � C(I). Then Ann
(

V (I)
)

= J I is the Jacobson radical of I in C(I).

(d) In particular,
(

I is a Jacobson ideal
)

⇐⇒
(

Ann
(

V (I)
)

= I
)

.

(e) Let C = {closed subsets X ⊂ I} and J = {Jacobson ideals I � C(I)}. Then the
maps

A : C−→ J and V : J−→ C

are bijections, and inverse to one another.

Proof: Exercise 162 2

10.7.3 The Nil Radical

Prerequisites: §10.5 Recommended: §10.7.1

Let R be a ring. An element r ∈ R is called nilpotent if rn = 0R for some n ∈ N.

Example 214:

(a) Let R = Z/72 and let r = 6̄. Then r is nilpotent, because (6̄)3 = 216 = 0̄.

(b) More generally, let R = Z/m, and suppose that m has prime factorization m = pµ1

1 ·
pµ2

2 · · · p
µk
k . Let r = p1 · p2 . . . pk in R. Then r is nilpotent in Z/m. To see this, let

M = max{µ1, . . . , µk}. Then rM = pM1 · · · pMk = 0̄, because pM1 · · · pMk is divisible by m.

(c) Let R =M2(R), and let M =
[

0 0
1 0

]

. Then M is nilpotent inM2(R), because M2 = 0.

The nilradical of R is the set of all nilpotent elements:

∗
√

0R = {r ∈ R ; rn = 0R for some n ∈ N}.
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Proposition 215 (Krull) Let R be a commutative ring.

(a) ∗
√

0R is a prime ideal in R.

(b) ∗
√

0R is the intersection of all prime ideals in R: ∗
√

0R =
⋂

P�R
P prime

P.

Proof: (a) ∗
√

0R is closed under addition: Exercise 163 .

∗
√

0R is an ideal: Suppose z ∈ ∗
√

0R, and let r ∈ R be arbitrary. We claim that r ·z ∈ ∗
√

0R
also. To see this, find n ∈ N such that zn = 0. Then (r · z)n

(c)
rnzn = rn0 = 0 (where (c)

is because R is commutative.)

∗
√

0R is a prime ideal: We’ll prove this in the case when R is an integral domain (the
general proof is more complicated and involves Zorn’s lemma).

Suppose ab ∈ ∗
√

0R. Then (ab)n = 0 for some n ∈ N. But (ab)n = anbn, and R has no zero
divisors, so either an = 0 or bn = 0; hence, either a ∈ ∗

√
0R or b ∈ ∗

√
0R.

(b) “⊃” Since ∗
√

0R itself is a prime ideal, it is clear that
⋂

P�R
P prime

P ⊂ ∗
√

0R.

“⊂” It suffices to show that ∗
√

0R ⊂ P for every prime ideal P�R. To show this, suppose
z ∈ ∗
√

0R. Then zn = 0 for some n ∈ N. But then zn ∈ P (because 0 ∈ P). Hence, since P
is prime, it follows that z ∈ P. 2

If I �R is any ideal, then the nilradical of I in R is defined:

∗
√
I = {r ∈ R ; rn ∈ I for some n ∈ N}.

Example 216:

(a) If I = {0} is the zero ideal, then the nilradical of I is just the nilradical of R.

(b) If P �R is a prime ideal, then ∗
√
P = P. (Exercise 164)

(c) Let R = Z, and let I = (12). Then ∗
√
I = (6) = (3) ∩ (2).

(d) Let R = Z, and suppose i ∈ N has prime factorization: i = pι11 · pι22 · · · p
ιk
k . Let I = (i)

be the principal ideal generated by i. Then:

∗
√
I =

{

all numbers of the form pj11 p
j2
2 · · · pjnn ; for some j1, j2, . . . , jn > 0

}

= (P ) where P = p1 · p2 · · · pk
= (p1) ∩ (p2) ∩ . . . ∩ (pk) (Exercise 165)
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(e) Let R = C[x], and let I = (x2 − 1) be the principal ideal generated by p(x) = x2 − 1.
Then

∗
√
I = (x+ 1) ∩ (x− 1) = M(−1) ∩M1,

where M1 = (x − 1) = {q(x) ∈ C[x] ; q(1) = 0}, and M(−1) = (x + 1) =
{q(x) ∈ C[x] ; q(−1) = 0}.

(f) Let R = C[x], and suppose p(x) ∈ C[x] factors into a product of linear polynomials:

p(x) = (x− c1)k1 · (x− c2)k2 · · · (x− cn)kn ,

for some c1, . . . , cn ∈ C. Let I = (p) be the principal ideal generated by p(x). Then

∗
√
I = (x− c1) ∩ (x− c2) ∩ (x− cn) = Mc1 ∩Mc2 ∩ . . .Mcn ,

where Mc = (x− c1) = {q(x) ∈ C[x] ; q(c) = 0}. (Exercise 166)

Proposition 217 Let R be a commutative ring, and let I �R.

(a) ∗
√
I is a prime ideal in R.

(b) ∗
√
I is the intersection of all prime ideals in R which contain I:

∗
√
I =

⋂

I⊂P�R
P prime

P.

(c) Let Q = R/I be the quotient ring, with quotient map π : R−→Q. Then

∗
√
I = π−1

(

∗
√

0Q

)

.

Proof: Exercise 167 Hint: Prove part (c) first; then prove parts (a) and (b) by combining
part (c) with Proposition 215, Corollary 204 on page 166 and the Lattice Isomorphism Theorem

(Theorem 134 on page 116) 2

We say that an ideal I is radical if ∗
√
I = I.

Example 218:

(a) Any prime ideal is radical.

(b) If N = ∗
√
I, then N is radical. (Exercise 168)

We say that the ring R is perfect if R has no nilpotent elements —ie. ∗
√

0R = {0}. In
other words, R is perfect if the zero ideal {0R} is radical.

Lemma 219 Let I �R. Then:
(

I is radical
)

⇐⇒
(

R/I is perfect
)

.

Proof: Exercise 169 2
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Further Reading: [4, §7.1].

10.7.4 Variety and Annihilator (Polynomial Rings)

Prerequisites: §10.7.3 Recommended: §10.7.2

Consider the ring C[x1, . . . , xn] of polynomial functions on Cn. For any subset X ⊂ Cn, we
define the annihilator of X to be the set

Ann (X) = {p ∈ C[x1, . . . , xn] ; p(x) = 0 for all x ∈ X}.

For example, if X = {c} is a singleton set, then

Ann ({c}) = {p ∈ C[x1, . . . , xn] ; p(c) = 0} = Mc,

where Mc is the maximal ideal from Example 〈169b〉.

Lemma 220

(a) For any X ⊂ Cn, Ann (X) is an ideal of C[x1, . . . , xn].

(b) The operation Ann (•) is inclusion-reversing. That is: If X ⊂ Y, then Ann (Y) ⊂
Ann (X).

(c) For any X ⊂ Cn and Y ⊂ Cn, Ann (X ∪Y) = Ann (X) ∩ Ann (Y).

Proof: Exercise 170 2

Let S ⊂ C[x1, . . . , xn] be any subset. Recall that the variety of S is the subset V (S) =
{c ∈ Cn ; p(c) = 0 for all p ∈ S}.

Lemma 221 The operation V (•) is inclusion-reversing. That is: If S ⊂ T , then V (T ) ⊂

V (S).

Proof: Exercise 171 2

Thus, we have defined two operations:

A :
{

subsets of Cn
}

−→
{

ideals of C[x1, . . . , xn]
}

V :
{

subsets of C[x1, . . . , xn]
}

−→
{

varieties of Cn
}

In a certain sense, the operation V is the ‘inverse’ of A:
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Lemma 222

(a) Let X ⊂ Cn. Then V
(

Ann (X)
)

is the smallest algebraic variety in Cn which contains

X (we call this the ‘Zariski closure’ of X).

(b) In particular,
(

X is an algebraic variety
)

⇐⇒
(

V
(

Ann (X)
)

= X
)

.

Proof: Exercise 172 2

It would be nice if we could also say that the operation A was the inverse of V. The precise
statement of this is:

Theorem 223 Hilbert’s Nullstellensatz (Radical Version)7

Let I � C[x1, . . . , xn]. Then

(a) Ann
(

V (I)
)

= ∗
√
I is the nil radical of I in C[x1, . . . , xn].

(b) In particular,
(

I is a radical ideal
)

⇐⇒
(

Ann
(

V (I)
)

= I
)

. 2

Corollary 224 Let Z = {algebraic varieties X ⊂ Cn} and N = {radical ideals I �

C[x1, . . . , xn]}. Then the maps

A : Z−→ N and V : N−→ Z

are bijections, and inverse to one another. 2

Further Reading: [4, §7.12] or [6, §X.2]

7This is actually the original version of the Nullstellensatz, so it is sometimes called the ‘classical’ Nullstel-
lensatz.
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Chapter 11

Field Theory

11.1 Compass & Straight-Edge Constructions I

In Mesopotamia, India, and especially Greece, ancient mathematicians perfected the art of
constructing precise geometric figures in the plane, using only a compass and straight-edge.
A compass is a length of string with a stylus at one end; using it, you can draw a circle of
any radius around any point in the plane. A straight-edge is simply a long, perfectly straight
object (eg. a tightly stretched string); using it, you can draw a straight line passing through
any chosen pair of points. In societies lacking computers or precision-engineered tools, these
were the only devices available for drafting and engineering.

We will provide three illustrations of these techniques: bisecting a line segment, bisecting
an angle, and constructing a regular hexagon.

Example A Bisecting a Line Segment
Consider a line segment x y between two points x and y in the plane (Figure 11.1A). The

construction proceeds as follows:

1. Construct a circle of radius r about x, as in Figure 11.1B. Here, r is any value greater
than half the distance from x to y.

2. Construct another circle with the same radius r, but centred at y, as in Figure 11.1C.

(A)

yx

(B)

yx

r

(C)

yx

r

r

(D)

yx

u

v

Figure 11.1: Bisecting a line segment.
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(A) (B) (C) (D)

θ θ θ θ/2

x

y

x

y

x

yp p p p

Figure 11.2: Bisecting an angle

(A) (B) (C) (D)

r r
r

(E)

x

y

x

C

Figure 11.3: Constructing a regular hexagon

3. Let u and v be the points where the two circles intersect, as in Figure 11.1D. Then the
line u v is perpendicular to x y, and intersects it exactly halfway between x and y.

Example B Bisecting an Angle
Consider an angle θ formed by two intersecting lines in the plane, as in Figure 11.2A. The

construction proceeds as follows:

1. Let p be the place where the two lines intersect. Construct a circle of any radius about
p, as in Figure 11.2B.

2. Let x and y be the places where this circle intersects the two lines forming θ. Form the
line segment x y, as in Figure 11.2C.

3. Using the previous construction, bisect the line x y. Draw a line from p to the midpoint
of x y, as in Figure 11.2D. The angle formed by this line is θ/2

Example C Constructing a Regular Hexagon
We will construct a regular hexagon whose sides all have length r.

1. Draw a circle C of radius r as in Figure 11.3A.

2. Let x be an arbitrary point on the circle, and draw another circle of radius r around x,
as in 11.3B.

3. Let y be a point where the new circle intersects C; draw another circle of radius r around
y, as in 11.3C.
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(A) (B)

1

1
1

1
2

2

2

23

3

3

1

Area = π Area = π

π

Figure 11.4: (A) Doubling the cube. (B) Squaring the circle

4. Proceeding in this fashion, draw four more circles of radius r, each centered at the place
where the last circle intersects C (Figure 11.3D)

5. We now have six equally spaced circles of radius r around C. Their centres are six equally
spaced points on C. Connect these points to get a regular hexagon, as in Figure 11.3E.

Four Outstanding problems: The Greeks developed a vast and sophisticated technology
of geometric constructions. However, for more than two thousand years, four problems have
remained unsolved:

I. Trisecting an angle: We saw how to bisect an angle in Example B. Is there a similar
construction to divide an angle into three equal parts?

II. Constructing arbitrary regular polygons: We saw how to construct a regular hexagon
in Example C. By using only three of the six vertices, we also obtain a regular (ie. equi-
lateral) triangle. By bisecting the angles of the hexagon (as in Example B), we can also
construct a dodecagon (12 sides), a 24-gon, etc.

By constructing perpendicular bisectors as in Example A, we can also construct a regular
square; by bisecting its angles, we get an octagon, a 16-gon, etc.

A fairly elaborate construction yields a regular pentagon. Angle bisection yields a regular
decagon (10 sides), a 20-gon, etc.

If you could trisect angles, then you could get a regular nonagon (9 sides) from an equilat-
eral triangle. Is there another way? Can you construct a heptagon (7 sides)? An 11-gon?
In general, is there a way to construct a regular N -gon for any N?

III. Doubling the Cube: If we build a cube with sides 1 metre long, then the interior of
cube has a volume of 1 cubic metre. Is it possible to build a cube whose volume is exactly
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C

HO

V

Figure 11.5: The starting point: an origin point O, a unit circle C, and lines H and V.

2 cubic metres, as in Figure 11.4A? That is: can you construct a cube whose sides have
length 3

√
2?

IV. Squaring the Circle: If we draw a circle with a radius of 1 metre, then its interior has
an area of π square metres. Is it possible to build a square with exactly the same area,
as in Figure 11.4B? That is: can you construct a square whose sides have length

√
π?

We will see that the answer to these four questions is “No”. This does not mean we don’t
yet know how to do these constructions. It is a much more sweeping statement: we can prove
that it is simply impossible to perform these constructions using only a compass and straight-
edge. While this may a depressing and negative result, it has one important consequence: we
no longer need waste mental effort trying to solve these problems.

To show that problems I to IV are unsolvable, we will use field theory. We will show that
the set of all possible lengths constructable using compass and straight-edge forms a field, K.
We will then show that lengths such as 3

√
2 or

√
π simply cannot be elements of K. To do this

will require understanding the theory of fields and field extensions.

To begin with, let’s more precisely define what a compass and straightedge (C&S) construc-
tion consists of. We begin with an unmarked Euclidean plane. As shown in Figure 11.5, We
set down a single point O, which we consider the ‘origin’, and we decide on a unit of length
measurement by drawing a circle C around O, and defining this to be the ‘unit circle’. We then
draw a single line H through O, which we define to be ‘horizontal’. We can then construct the
perpendicular line V, which we define as ‘vertical’. At this point, we can identify the Euclidean
plane with the set R2 in the obvious way.

A C&S construction is any sequence of the following five basic operations, illustrated in
Figure 11.6.



11.1. COMPASS & STRAIGHT-EDGE CONSTRUCTIONS I 181

(A)

(x1,y1)

(x2,y2)

(B)

(x1,y1)

(x2,y2)
(C)

L1

L2

(x,y)

(E)

L

C

(x1,y1)

(x2,y2)

(D)

C1

C2

(x2,y2)

(x1,y1)

Figure 11.6: The five basic operations with compass and straight-edge.

(Figure 11.6A) Given two points (x1, y1) and (x2, y2) in R2, we can draw a unique line passing
through these points.

(Figure 11.6B) Given two points (x1, y1) and (x2, y2) in R2, we can draw a unique circle
centered at (x1, y2) and passing through (x2, y2).

(Figure 11.6C) Given two (nonparallel) lines L1 and L2, we can find the unique point where
they intersect.

(Figure 11.6D) Given two circles C1 and C2, we can find the unique one or two points where
they intersect.

(Figure 11.6E) Given a circle C and a line L, we can find the unique one or two points
where they intersect.

We will say that a point, line, or circle is constructable if it can be obtained through some
sequence of these five operations, starting from nothing more than the origin O, the unit circle
C, and the lines H and V.

A constructable length is any real number r which appears as the distance between two
constructable points x and y. Let K be the set of all constructable lengths; hence K ⊂ R.

Proposition 225 K satisfies the following properties:

(a) K is a field.
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a b

a+b
(A)

a-b b

a
(B)

Figure 11.7: (A) Addition of lengths. (B) Subtraction of lengths.

(b) Q ⊂ K.

(c) K is closed under square roots. That is: if k ∈ K, then
√
k is also in K.

Furthermore:

1. K is the smallest field in R satisfying properties (A), (B), and (C). That is: all elements
of K can be obtained by starting with Q, and iteratively applying operations of addition,
subtraction, multiplication, division, and square root.

2. The set of all constructable points in the plane is exactly K2 ⊂ R2.

3. A line L is constructable if and only if L = {(x, y) ∈ R2 ; ax+ by = c}, where a, b, c ∈ K.

4. A circle C is constructable if and only if C = {(x, y) ∈ R2 ; (x− a)2 + (y − b)2 = c},
where a, b, c ∈ K.

Proof: (A) We must show that K is closed under addition, subtraction, multiplication,
and division.

Closure under addition/subtraction: Let a, b ∈ K. To construct the length a + b, we
proceed as in Figure 11.7A: we construct parallel, adjoining line segments of lengths a and
b; the length of the combination is a+ b. To get a− b, we construct a line segment of length
a, and then remove a segment of length b, as in Figure 11.7B.

Closure under multiplication: Let a, b ∈ K. Construct a right-angle triangle whose base
has length 1 and whose height has length a as in Figure 11.8A. Now extend this to a similar
triangle whose base has length b, as in Figure 11.8B. Then the height of the new triangle is
a · b.
Closure under division: Let a, b ∈ K. Construct a right-angle triangle whose base has
length b and whose height has length a as in Figure 11.9A. Now construct a similar triangle,
whose base has length 1, as in Figure 11.9B. Then the height of the new triangle is a/b.

Proof of (B) The set K contains the length 1 by definition. Since K is closed under
addition/subtraction, we then have Z ⊂ K. Since K is closed under multiplication/division,
we get Q ⊂ K.
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(A) (B)

a

1

a

1
b

ab

Figure 11.8: Multiplication of lengths.

(A) (B)

a/b

1
b

a

b

a

Figure 11.9: Division of lengths.

(A)

a 1

a+1
2

(B)

1

a+
1

2

a-1
2

b (  )b2 = a-1
2

a+1
2 (  )

2 2

-

= a2+2a+1
4

a2-2a+1
4-

= 4a
4 = a

Pythagoras:

Figure 11.10: Computing the square root of a length
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Proof of (C) Let a ∈ K. We want to construct the length
√
a. To do this, first build a

circle of diameter a+ 1, as in Figure 11.10A. Thus, the radius of this circle is a+1
2

. Now draw
a perpendicular to the diameter, as in Figure 11.10B. A simple computation shows that this
perpendicular has length b =

√
a.

Proof of 2: Suppose (x, y) ∈ R2 was a constructable point. We can draw a perpendicular
line from H to (x, y); the length of this line is x, so x ∈ K. We can draw a perpendicular
line from V to (x, y); the length of this line is y, so y ∈ K.

Proof of 3: A line L is constructable if it is the unique line passing through two con-
structable points (x1, y1) and (x2, y2), as in Figure 11.6A. In this case, the coefficients a, b, c
can be obtained by solving the following system of linear equations:

x1a + y1b + c = 0;
x2a + y2b + c = 0.

If (x1, y1) is directly over (x2, y2) (ie. the line L is parallel to the vertical V) then x1 = x2,
and we set a = 1, b = 0, and c = x1 = x2. Otherwise, set b = −1, to get the simpler system:

x1a− c = y1;

x2a− c = y2.

We then solve this system to obtain:

[

a
c

]

=

[

x1 −1
x2 −1

]−1[
y1

y2

]

.

Since x1, x2, y1, y2 and 1 are in K, and K is a field, we conclude that a and c are also in K.

Proof of 4: A circle C is constructable if it is the unique circle centred at a constructable
point (x1, y1) and passing through another constructable point (x2, y2), as in Figure 11.6C. In
this case, set a = x1 and b = y1, both of which are inK. Now let c =

√

(x1 − x2)2 + (y1 − y2)2.
Since K is closed under square roots, it follows that c ∈ K also.

Proof of 1: Let ˜K be the smallest field in R satisfying (A), (B), and (C). Clearly, ˜K ⊂ K;

we’ll show K ⊂ ˜K.

The arguments from the proofs of parts 2, 3, and 4 show:

• If L is the line between two points in ˜K2, then L = {(x, y) ∈ R2 ; ax+ by = c}, where

a, b, c ∈ ˜K. We say that L is a ˜K-line.

• If (x, y) is the point of intersection of two ˜K-lines, then (x, y) ∈ ˜K2.

• If C is the circle defined by two points in ˜K2, then C = {(x, y) ∈ R2 ; (x− a)2 + (y − b)2 = c},
where a, b, c ∈ ˜K. We say that C is a ˜K-circle.

It remains to show:
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1. If (x, y) is a point of intersection of two ˜K-circles then (x, y) ∈ ˜K2.

2. If (x, y) is a point of intersection of a ˜K-line and a ˜K-circle then (x, y) ∈ ˜K2.

It is Exercise 173 to show:

Claim 1: If (x, y) is a point of intersection of a ˜K-circle with a ˜K-line or another ˜K-circle,

then x satisfies a quadratic equation ax2 + bx+ c = 0, where a, b, c ∈ ˜K. Likewise, y satisfies
a quadratic equation dx2 + ex+ f = 0, where d, e, f ∈ ˜K.

It follows that x = −b±
√
b2−4ac

2a
and y =

−e±
√
e2−4df

2d
. Since ˜K is a field closed under square

roots, it follows that x and y are also in ˜K. 2

To show the impossibility of constructions I to IV, we’ll show certain lengths are not in K:

I. Trisecting an angle: Angle θ is trisectable iff sin(θ/3) is in K. This is obviously the case
for some values of θ (eg. θ = π/2), but we’ll show it is not the case for most θ.

II. Constructing arbitrary regular polygons: A regularN -gon is constructable iff sin(2π
N

)
is in K. We’ll show this is not true for some N .

III. Doubling the Cube: We can double a cube iff 3
√

2 ∈ K. We’ll show this is false.

IV. Squaring the Circle: We can double a circle iff
√
π ∈ K. We’ll show this is false.

11.2 Field Extensions

Prerequisites: §7.5 Recommended: §11.1

Let F be a field. An extension of F is another field E such that F ⊂ E.

Example 226:

(a) R is an extension of Q.

(b) C is an extension of R.

(c) Let K be the field of constructable lengths from Proposition 225 in §11.1. Then K is an
extension of Q.

(d) Let R(x) be the field of rational functions with real coefficients (Example 〈98h〉 on page
84), and let C(x) be the field of rational functions with complex coefficients. Then C(x)
is an extension of R(x).
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We consider the pair F and E as a single structure, called a field extension. We will denote
this structure by “(E ⊃ F)”. Sometimes the notation “E/F” is used (read “E over F”). We will
also portray this field extension diagramatically by:

E
∣

∣

∣

F

11.2.1 Extensions as Vector Spaces:

It is natural to think of C as a ‘two-dimensional real vector space’. We often speak of the
‘complex plane’ (as opposed to the ‘real line’). Every element of c ∈ C can be written in a
unique way as c = r1 + r2i, so the set {1, i} is a basis for C.

This idea generalizes to any field extension. If E is a field extension of F, then E is auto-
matically a vector space over F. That is:

1. E is an abelian group under the operation of addition:

• e1 + e2 = e2 + e1, for all e1, e2 ∈ E
• e1 + (e2 + e3) = (e1 + e2) + e3, for all e1, e2, e3 ∈ E
• e+ 0 = e for all e ∈ E.

• e+ (−e) = 0 for all e ∈ E.

2. F acts linearly on E by scalar multiplication:

• For any f ∈ F and e ∈ E, the product f · e is in E.

• f · (e1 + e2) = fe1 + fe2, for any f ∈ F and e1, e2 ∈ E.

• (f1 · f2) · e = f1 · (f2 · e) for any f1, f2 ∈ F and e ∈ E.

The degree of the extension (E ⊃ F) is the dimension of E as an F-vector space. That is:

deg
(

E ⊃ F
)

= min
{

|S| ; where S ⊂ E is an F-spanning set for E
}

= max
{

|I| ; where I ⊂ E is an F-linearly independent subset of E
}

= |B|, where B ⊂ E is any F-basis for E.

Sometimes the notation “[E : F]” is used to indicate degree. We say E is a finite extension if

deg
(

E ⊃ F
)

is finite, and an infinite extension if deg
(

E ⊃ F
)

is infinite.

Example 227:

(a) C is a 2-dimensional vector space over R, with basis {1, i}. Thus, deg
(

C ⊃ R
)

= 2.
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(b) R is an infinite-dimensional vector space over Q. One way to see this is to observe that
card

[

QN
]

= card [Q] = ℵ0 for any finite N . In other words, any finite-dimensional rational
vector space is countable. But R is uncountable; hence its dimension (as a rational vector

space) must be infinite (and indeed, uncountable). Thus, deg
(

R ⊃ Q
)

=∞.

11.2.2 Simple Extensions

Let E ⊃ F be any extension of F, and let α ∈ E. We define F(α) to be the smallest subfield of
E containing both α and F. That is:

F(α) =
⋂

F⊂L⊂E
α∈L

L.

We say F(α) is a simple extension of F.

Example 228:

(a) Q(
√

2) is the smallest subfield of R containing Q and
√

2. We’ll see later (Example 〈233a〉
on page 191) that:

Every element of Q(
√

2) has the form a+ b
√

2 for unique rational numbers a, b ∈ Q.

Addition in Q(
√

2) takes the obvious form:
(

a1 + b1

√
2
)

+
(

a2 + b2

√
2
)

= (a1 + a2) + (b1 + b2)
√

2.

Thus, Q(
√

2) is a 2-dimensional vector space over Q, with basis {1,
√

2}. Hence Q(
√

2)
is a degree-2 extension of Q.

Multiplication in Q(
√

2) takes the obvious form:
(

a1 + b1

√
2
)

·
(

a2 + b2

√
2
)

= (a1a2 + 2b1b2) + (a1b2 + a2b1)
√

2.

For example:
(

1 + 3
√

2
)

·
(

5 + 7
√

2
)

= (1 · 5 + 2 · 3 · 7) + (1 · 7 + 3 · 5)
√

2 = 47 +

22
√

2.

(b) Q(π) is the smallest subfield of R containing Q and π. We’ll see later that elements of
Q(π) take the form of ‘rational functions in π’ ie. they have the form

q0 + q1π + q2π
2 + . . .+ qnπ

n

r0 + r1π + r2π2 + . . .+ rmπm
,

where n < m, and q0, . . . , qn, r0, . . . , rm ∈ Q.

Addition and multiplication proceed exactly as for rational functions. For example:
(

1 + 2π

3− 4π

)

·
(

5 + 1π

2− 1π

)

=
(1 + 2π) · (5 + 1π)

(3− 4π) · (2− 1π)
=

5 + 7π + 2π2

6− 5π + 4π2
.
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The elements
{

. . . ,
1

π2
,

1

π
, 1, π, π2, π3, . . .

}

are all Q-linearly independent (this is because π is transcendental over Q, a fact which
we will not prove). Thus, Q(π) is an infinite-degree extension of Q.

11.2.3 Finitely Generated Extensions

Let E ⊃ F be any extension of F, and let α1, α2, . . . , αn ∈ E. We define F(α1, . . . , αn) to be the
smallest subfield of E containing {α1, . . . , αn} and F. That is:

F(α1, . . . , αn) =
⋂

F⊂L⊂E
α1,...,αn∈L

L.

We say F(α1, . . . , αn) is a finitely generated extension of F.

Example 229:

(a) Q(
√

2,
√

3) is the smallest subfield of R containing Q and
√

2. We’ll see later (in Example
〈243a〉 on page 200) that:

Every element of Q(
√

2,
√

3) has the form a+ b
√

2 + c
√

3 + d
√

6, for unique
rational numbers a, b, c, d ∈ Q.

(b) Q(π, e) is the smallest subfield of R containing Q, π, and e. Elements of Q(π, e) take the
form of ‘rational functions in π and e’ ie. they have the form

J
∑

j=1

K
∑

k=0

qjkπ
nem

N
∑

n=1

M
∑

m=0

rnmπ
nem

where {qjk} ⊂ Q and {rnm} ⊂ Q.

(This is because π and e are both is transcendental over Q, and further are algebraically
independent of one another. We will not prove these facts) Thus, Q(π, e) is an infinite-
degree extension of Q.

Lemma 230 Let E ⊃ F.

(a) If α, β ∈ E, and A = F(α), then F(α, β) = A(β).

(b) More generally, if α1, α2, . . . , αn, β ∈ E, then F(α1, . . . , αn, β) = F(α1, . . . , αn)(β).

Proof: Exercise 174 2
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11.3 Finite and Algebraic Extensions

Prerequisites: §11.2

Let E be an extension of F, and let α ∈ E. If p(α) = 0 for some p ∈ F[x], then we say α is
algebraic over F; if not, we say α is a transcendental over F.

Example 231:

(a) α = 3
√

2 is algebraic over over Q, because p(α) = 0, where p(x) = x3 − 2.

(b) α = i is algebraic over over Q, because p(α) = 0, where p(x) = x2 + 1.

(c) α = i is algebraic over over R for the same reason.

(d) π and e are transcendental overQ. There is no polynomial p(x) ∈ Q[x] such that p(π) = 0
or p(e) = 0. (This is actually very hard to prove).

If E is an extension of F, then then we say E is an algebraic extension if ε is algebraic over
F for every ε ∈ E. Otherwise, we say E is a transcendental extension of F. For example,
we’ll show:

• Q(
√

3) is an algebraic extension of Q.

• Q(i) is an algebraic extension of Q.

• Q(
√

3, i) is an algebraic extension of Q.

• Q(π) is a transcendental extension of Q.

• Q(
√

3, π) is a transcendental extension of Q.

These claims follow from the following result:

Proposition 232 Let E be an extension of F, and let α ∈ F. The following are equivalent:

(a) α is algebraic over F.

(b) F(α) is a finite extension of F.

(c) There exists a unique monic, irreducible polynomial m(x) ∈ F[x] so that α is a root
of m(x). In this case,

1. If p(x) ∈ F[x] is any polynomial such that p(α) = 0, then m(x) divides p(x).

2. F(α) ∼= F[x]/(m), via the isomorphism

Ψ :
F[x]

(m)
3 p(x) 7→ p(α) ∈ F(α).

(Note that this does not depend on the field E).
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3. deg
(

F(α) ⊃ F
)

= degree (m(x)).

4. F(α) has a F-basis: {1, α, α2, . . . , αN}.

Proof: (a)=⇒(c) Let A = {p ∈ F[x] ; p(α) = 0}, and let m(x) be a nonzero element of
minimal degree in A. By multiplying m(x) by some element of F, we can assume m is monic.

Claim 1: m(x) is irreducible.

Proof: Suppose m(x) = p(x) · q(x). Then p(α) · q(α) = m(α) = 0, so either p(α) = 0
or q(α) = 0. Hence, either p ∈ A or q ∈ A. Suppose p ∈ A. But if m(x) = p(x) · q(x),
then degree (p) < degree (m), contradicting the minimality of m. By contradiction, m
must be irreducible. ................................................. 2 [Claim 1]

Proof of (c1) Let p(x) ∈ A; we want to show that m(x) divides p(x). Apply Polynomial

Long-Division to write p(x) = q(x)m(x) + r(x), where degree (r) < degree (q). We want to
show r = 0. To see this, observe that

0 = p(α) = q(α) ·m(α) + r(x) = q(α) · 0 + r(x) = r(x).

Hence, r ∈ A. But q is the nonzero element of minimal degree in A, and degree (r) <
degree (q), so we must have r = 0.

Proof of (c2) Define Ψ : F[x]−→F(α) by p(x) 7→ p(α). Let I = image [Ψ] ⊂ F(α).

It is Exercise 175 to verify that

ker(Ψ) = (m).

It follows from the Fundamental Isomorphism Theorem that there is an isomorphism

I ∼=
F[x]

ker(Ψ)
=

F[x]

(m)
.

It remains to show that I = F(α). To see this, observe that

(

m(x) is irreducible.
)

=Prop.165⇒
(

(m) is a maximal ideal.
)

=Cor.167⇒
(

I is a field.
)

.

Also note that I contains α and F. Thus, I must contain F(α). But I ⊂ F(α), so we conclude
that I = F(α).

Proof of (c4) We must show that the set {1, α, α2, . . . , αn−1} is both linearly independent
and a spanning set for F(α) as a F-vector space.

Spanning Set: For any f(x) ∈ F[x], let f(x) = Ψ
(

f(x)
)

.

Claim 2: Every element of F(α) has the form f0 + f1α + f2α
2 + . . . + fmα

m for some
m ∈ N and f0, . . . , fm ∈ F.
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Proof: Let e ∈ F(α). It follows from (c2) that e = f(x), for some polynomial f(x) ∈ F[x].
Suppose f(x) = f0 +f1x+f2x

2 + . . .+fmx
m; then f(x) = f 0 +f 1x+f 2x

2 + . . .+fmx
m =

f0 + f1α + f2α
2 + . . .+ fmα

m. ........................................ 2 [Claim 2]

Claim 3: If m ≥ n, then αm = r0 + r1α + r2α
2 + . . . + rn−1α

n−1 for some coefficients
r0, . . . , rn−1 ∈ F.

Proof: Apply Polynomial Long Division to write xm = p(x)q(x) + r(x) for some
q, r ∈ F[x], where r(x) is a polynomial of degree less than n. Then

αm = xm = p(x)q(x) + r(x) = r(α).

Thus, if r(x) = r0 +r1x+r2x
2 + . . .+rn−1x

n−1, then αm = r0 +r1α+r2α
2 + . . .+rn−1α

n−1.
2 [Claim 3]

Combine Claims 4 and 5 to conclude that {1, α, α2, . . . , αn−1} spans F(α).

Linearly Independent: Suppose that f0 + f1α + f2α
2 + . . . + fn−1α

n−1 = 0 for some
f0, . . . , fn−1 ∈ F; we want to show that f0 = f1 = . . . = fn−1 = 0.

Let f(x) = f0 + f1x + f2x
2 + . . . + fn−1x

n−1, a polynomial in F[x]. Then we have f(x) = 0,
which means that f(x) ∈ I, which means that p(x) divides f(x). Thus, either f = 0, or
degree (f) ≥ degree (p) = n. But degree (f) ≤ n − 1 by construction, so this is impossible.
We conclude that f = 0 —in other words, f0 = f1 = . . . = fn−1 = 0.

Proof of (c4) It follows from (c3) that deg
(

F(α) ⊃ F
)

= degree (m(x)).

(c)=⇒(b) This is immediate.

(b)=⇒(a) Suppose F(α) has degree n. Then the n+ 1 elements {1, α, α2, . . . , αn} must be
F-linearly dependent. In other words, there are elements f0, f1, . . . , fn ∈ F (not all zero) so
that f0+f1α+. . .+fnα

n = 0. But this means that f(α) = 0, where f(x) = fnx
n+. . .+f1x+f0.

Hence, α is a root of the polynomial f , so α is algebraic. 2

The polynomial m(x) in Proposition 232 is called the minimal polynomial of α, and is
usually denoted mα,F(x), to make its dependence on α and F explicit. The degree of α (over

F) is the degree of mα,F(x), which we denote by degree (α;F). It follows that deg
(

F(α) ⊃ α
)

=

degree (α;F).

Example 233:

(a)
√

2 is algebraic over Q, with minimal polynomial m√2;Q(x) = x2 − 2. Thus, Proposition

232 part (c2) says Q(
√

2) is isomorphic to Q[x]/(x2 − 2). Part (c3) says that Q(
√

2) is
an extension of degree 2 over Q, and Part (c4) says that Q(

√
2) has Q-basis {1,

√
2}.
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-1 1 2

23

i

-i

23

32
2

-1+ iα=

23 32
2

-1- iβ=

Figure 11.11: The three cube roots of 3 in the complex plane.

(b) Let p(x) = x3 − 2. Then p(x) is irreducible over Q; its three roots in C are:

3
√

2; α =
3
√

2

2
·
(

−1 +
√

3 · i
)

; and β =
3
√

2

2
·
(

−1−
√

3 · i
)

(see Figure 11.11)

Thus, 3
√

2 is algebraic over Q, with minimal polynomial m 3√2;Q(x) = p(x). Thus, Propo-

sition 232(c2) says that Q( 3
√

2) is isomorphic to Q[x]/(p(x)). Part (c3) says that Q( 3
√

2)
is an extension of degree 3. Part (c4) says that Q( 3

√
2) has Q-basis {1, 3

√
2, 3
√

4}.

(c) However, 3
√

2 ∈ R, so R( 3
√

2) = R –in other words, R( 3
√

2) is a trivial extension of 3
√

2.
The polynomial p(x) = x3 − 2 is not irreducible over R, because it factors:

x3 − 2 = (x− 3
√

2)(x2 +
3
√

2 · x+
3
√

4) (check this)

Thus, p(x) is not a minimal polynomial for 3
√

2 over R. Indeed, the minimal polynomial
for 3
√

2 over R is just m 3√2;R(x) = x− 3
√

2.

(d) Let p(x) = x3 − 2 as in Example 〈233b〉, and now let α =
3√2
2
·
(

−1 +
√

3 · i
)

(see Figure
11.11). As in Example 〈233b〉, α is algebraic over Q, with minimal polynomial p(x).
Thus, Proposition 232 part (c2) says that Q(α) is isomorphic to Q[x]/(p(x)); part (c3)
says Q(α) is an extension of degree 3, and part (c4) says Q(α) has basis {1, α, α2}. This
is portrayed on the left side of Figure 11.12(A).

Observe that this means Q(α) is isomorphic to Q( 3
√

2) (from Example 〈233b〉). However,
Q(α) is not equal to Q( 3

√
2), because Q( 3

√
2) ⊂ R, whereas Q(α) extends into the complex

plane.

(e) Let α be as in Example 〈233d〉. Then α 6∈ R, so R(α) is a nontrivial extension of R.
However, p(x) = x3 − 2 is not the minimal polynomial for α over R, because p(x) is not
irreducible, as we saw in Example 〈233c〉. Instead, the minimal polynomial for α over R
is given by:

mα;R(x) = (x2 +
3
√

2 · x+
3
√

4)
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F

F(ε)=

E
K(ε) =

K

K[x]
mε;Κ(x)

F[x]
mε;F(x)

Q

Q(α)=

C
R(α) =

R3

2

D1

D2

D1 D2

Q[x]
x3-2

R[x]
x2+     x +23 43

(A) (B)
3 2

Figure 11.12: (A) Q(α) has degree 3 over Q, but R(α) only has degree 2 over R. This is
because mα;Q(x) = x3 − 2, but mα;R(x) = x2 + 3

√
2x + 3

√
4. (B) F(ε) has degree D1 over F,

while K(ε) has degree D2 ≤ D1 over K.

Thus, Proposition 232(c) says that

R(α) ∼= R[x]/(x2 +
3
√

2 · x+
3
√

4)

is an extension of degree 2, with R-basis {1, α}.
This is portrayed on the right side of Figure 11.12(A).

Compare Example 〈233b〉 and 〈233c〉. Compare Examples 〈233d〉 and 〈233e〉. It appears
that the minimal polynomial of an element α depends on the field we are comparing α to. The
formal statement is as follows:

Proposition 234 Let E ⊃ F be an extension of F, and let ε ∈ E be algebraic over F. Let

K ⊃ F be another extension of F. Then, as shown in Figure 11.12(B):

(a) ε is algebraic over K.

(b) If we treat mε;F(x) as element of K[x], then mε;F(x) may no longer be irreducible.
However:

(c) mε;K(x) divides mε;F(x) (in K[x]).

(d) Thus, deg
(

K(ε) ⊃ K
)

≤ deg
(

F(ε) ⊃ F
)

.

Proof: (a) Clearly, F[x] ⊂ K[x]. Thus, mε;F(x) is an element of K[x], so since mε;F(ε) = 0
by definition, it follows that ε is algebraic over K.
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(c) Let mε;K(x) be the minimal polynomial of ε over K, then Proposition 232(c1) says
mε;K(x) divides mε;F(x).

(b) and (d) follow immediately from (c). 2

Corollary 235 Let E ⊃ F. Then
(

E is a finite extension of F
)

=⇒
(

E is an algebraic extension of F
)

.

Proof: Let ε ∈ E. We want to show ε is algebraic.

Consider the subfield F(ε). Observe that deg
(

F(ε) ⊃ F
)

≤ deg
(

E ⊃ F
)

, so it is finite.

Say deg
(

F(ε) ⊃ F
)

= N . Thus, the elements 1, ε, ε2, . . . , εN cannot be linearly independant;

hence there are some f0, f1, . . . , fN ∈ F (not all zero) so that

f0 + f1ε+ . . .+ fNε
N = 0.

But now define polynomial f(x) ∈ F[x] by

f(x) = f0 + f1x+ . . .+ fNx
N .

It follows that f(ε) = 0. Hence, ε is algebraic.

This holds for any ε ∈ E, so E is finite. 2

Note: The converse of Corollary 235 is false. While it is true that every finite extension of
F is algebraic, it is not true that every algebraic extension is finite.

The next theorem can be summarized: A finite extension of a finite extension is finite; an
algebraic extension of an algebraic extension is algebraic.

Theorem 236 Let F ⊂ E ⊂ D be a chain of field extensions.

(a) deg
(

D ⊃ F
)

= deg
(

D ⊃ E
)

· deg
(

E ⊃ F
)

(whether these degrees are finite or

infinite).

(b) Thus, if D has finite degree over E, and E has finite degree over F, and then D also
has finite degree over F See Figure 11.13(A).

(c) In particular, suppose deg
(

E ⊃ F
)

= N , and {ε1, . . . , εN} is a F-basis for E. Suppose

deg
(

D ⊃ E
)

= M , and {δ1, . . . , δN} is a E-basis for D. Then

{

ε1δ1, ε1δ2, . . . , ε1δM ,

ε2δ1, ε2δ2, . . . , ε2δM , . . .
...

...
. . .

...

. . . εNδ1, εNδ2, . . . , εNδM

}

is an F-basis for D.
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F

E

D

finite

fi
ni
te

F

E

D

finite

fi
ni
tef
i
n
i
t
e

implies

(A)

F

E

D

algebraic

al
ge
br
ai
c

F

E

D

algebraic

al
ge
br
ai
c

a
l
g
e
b
r
a
i
c

implies

(B)

If  D is a finite extension of  E, and  E  is
a finite extension of  F, then  D is a finite
extension of  F.

If  D is an algebraic extension of  E, and 
E is an algebraic extension of  F, then  D 
is an algebraic extension of  F.

Figure 11.13:

(d) If D is algebraic over E, and E is algebraic over F, and then D is also algebraic over F
(whether these extensions are finite or infinite). See Figure 11.13(B).

Proof: Clearly (a) and (b) follows from (c), so we’ll prove (b). We must show that the set
{εnδm}m=1...M

n=1...N is F-linearly independent and an F-spanning set for D.

Spanning Set: Let d ∈ D be arbitrary. Since {δ1, . . . , δM} is a E-basis for D, we have:

d = e1δ1 + . . .+ eMδM (11.1)

for some e1, . . . , eM ∈ E. But {ε1, . . . , εN} is a F-basis for E. Hence, we can write:

e1 = f11ε1 + . . .+ fN1εN
...

...
...

eM = f1Mε1 + . . .+ fNMεN

(11.2)

Combining equations (11.1) and (11.2) yields:

d =
M
∑

m=1

emδm =
M
∑

m=1

(

N
∑

n=1

fnmεn

)

δm =
M
∑

m=1

N
∑

n=1

fnmεnδm.

Linearly Independent: Suppose we had an equation
N
∑

n=1

M
∑

m=1

fnmεnδm = 0 for some

coefficients fnm ∈ F not all zero. We can rewrite this as:

0 =
M
∑

m=1

(

N
∑

n=1

fnmεn

)

δm =
M
∑

m=1

emδm
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where e1 = f11ε1 + . . .+ fN1εN etc. Since {δ1, . . . , δm} are E-linearly independent, we must
conclude that e1 = . . . = eM = 0. But then, since ε1, . . . , εn are F-linearly independent, we
must have fnm = 0 for all n and m.

(d) Let δ ∈ D; we want to show that δ is algebraic over F.

Since δ is algebraic over E, there is some polynomial p(x) ∈ E[x] so that p(δ) = 0. Suppose
p(x) = πnx

n + . . .+ π1x+ π0, where π0, π1, . . . , πn ∈ E. Let P = F(π1, . . . , πn) ⊂ E, as in the
figure on the left.

Claim 1: P is finite over F.

Proof: Let P0 = F(π0). Then P0 is a finite extension of
F by Proposition 232(b), because π0 is algebraic over
F.

Next, define:

P1 = P0(π1) = F(π0, π1)
P2 = P1(π2) = F(π0, π1, π2)
P3 = P2(π3) = F(π0, π1, π2, π3)

...
...

...
...

...
Pn = Pn−1(πn) = F(π0, π1, π2, π3, . . . , πn) = P

Then P1 is a finite extension of P0 by Proposition
232(b), because π1 is algebraic over F (and thus, over
P1). Likewise, P2 is finite over P1; P3 is finite over P2,
and so on.

Thus, we have a chain of finite extensions:

F ⊂ P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pn = P

Hence, by iterating part (b) of this theorem, we con-
clude that P is finite over F. ......... 2 [Claim 1]

D

E

E(δ)

F(π1,...,πn)=P

P(δ)

F

fi
ni
te

f
i
n
i
t
e

f
i
n
i
t
e

F(π0,π1)=P1

f
i
n
i
t
e

f
i
n
i
t
e

F(π0)=P0

f
i
n
i
t
e

Claim 2: δ is algebraic over P.

Proof: Recall that p(x) = πnx
n + . . .+ π1x+ π0. Now, π1, . . . , πn ∈ P by construction, so

p(x) ∈ P[x]. But p(δ) = 0; hence δ is algebraic over P. ................ 2 [Claim 2]

Claim 3: P(δ) is finite over P.

Proof: δ is algebraic over P, so this follows from Proposition 232. ..... 2 [Claim 3]

Claim 4: P(δ) is finite over F.

Proof: Combine Claims 1 and 3 with part (b) of this theorem. ........ 2 [Claim 4]
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Claim 4 and Corollary 235(b) imply that P(δ) is algebraic over F. Hence, δ is algebraic over
F. This holds for any δ ∈ D. Hence, D is algebraic over F. 2

Corollary 237 Suppose D ⊃ E ⊃ F. Then:

(a) deg
(

E ⊃ F
)

divides deg
(

D ⊃ F
)

.

(b) Thus, deg
(

E ⊃ F
)

≤ deg
(

D ⊃ F
)

, and

(c)
(

deg
(

E ⊃ F
)

= deg
(

D ⊃ F
) )

⇐⇒
(

E = D
)

.

(d) Hence, if deg
(

D ⊃ F
)

is prime, then there is no subfield E such that D ) E ) F. 2

Corollary 238 Let E ⊃ F. The following are equivalent:

(a) E is a finite extension of F

(b) E = F(α1, α2, . . . , αn), where α1, . . . , αn are elements algebraic over F.

(c) deg
(

E ⊃ F
)

≤ d1 · d2 · · · dn, where dk = degree (αk;F).

Proof: (a)=⇒(b) (by induction on deg
(

E ⊃ F
)

)

Base Case: Suppose deg
(

E ⊃ F
)

= 2. Let α ∈ E be any element not in F. Then F(ε) is

an extension of F of degree 2 or greater, so Corollary 237(c) says F(α) = E.

Induction: Suppose that “(a)=⇒(b)” is true for all fields F′ and all extensions E′ ⊃ F′ of

degree less than D. Suppose that deg
(

E ⊃ F
)

= D.

Let α1 ∈ E. Then α1 is algebraic over F, so Corollary 232(b) says deg
(

F(α1) ⊃ F
)

= d1,

where d1 = degree (αk;F) > 1.

Now, let F′ = F(α1); then E ⊃ F′ ⊃ F, so Theorem 236(a) says that

deg
(

E ⊃ F′
)

=
deg

(

E ⊃ F
)

deg
(

F′ ⊃ F
) =

D

d1

< D.

Hence, by induction, E = F′(α2, . . . , αn) for some elements α2, . . . , αn ∈ E. But then

E = F′(α2, . . . , αn) = F(α1)(α2, . . . , αn) = F(α1, α2, . . . , αn).
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Since E is algebraic over F, we know that α2, . . . , αn are algebraic over F.

(b)=⇒(c) (by induction on n)

Base Case (n = 1) If E = F(α), then deg
(

E ⊃ F
)

= degree (α;F) by definition.

Induction: Let K = F(α1, . . . , αn−1). By induction, we suppose

deg
(

K ⊃ F
)

≤ d1 · d2 · · · dn−1. (11.3)

Note that E = K(αn). Thus,

deg
(

E ⊃ K
)

(∗)
degree (αn;K) ≤(†) degree (αn;F) = dn. (11.4)

Here, (∗) is by the Base Case, and (†) is by Proposition 234(d). Thus,

deg
(

E ⊃ F
)

(∗∗)
deg

(

E ⊃ K
)

· deg
(

K ⊃ F
)

≤(‡) dn · (d1 · d2 · · · dn−1).

Here, (∗∗) is by Theorem 236(a), and (‡) follows from equations (11.3) and (11.4).

(c)=⇒(a) If deg
(

E ⊃ F
)

≤ d1 · d2 · · · dn, then deg
(

E ⊃ F
)

is finite, so E is algebraic

over F by Corollary 235. 2

Corollary 239 Let E ⊃ F, and let A = {α ∈ E ; α is algebraic over F}.
Then A is a subfield of E, and is an algebraic extension of F.

Proof: Clearly, F ⊂ A ⊂ E. We must show that A is a field —ie. that it is closed under
addition, subtraction, multiplication, and division.

To see this, let α, β ∈ A. Then α, β are algebraic over F, so the field F(α, β) has finite degree
over F, by Corollary 238. Hence, F(α, β) is algebraic over F, by Corollary 235. Hence, all
elements of F(α, β) are algebraic —ie. F(α, β) ⊂ A.

But α + β, α− β, α · β, and α/β are all elements of F(α, β), and thus, of A. 2

11.4 (multi)Quadratic Extensions

Prerequisites: §11.3

Let E be an extension of F, and let α ∈ E. If q(α) = 0 for some quadratic polynomial
q(x) = x2 + q1x + q0 in F[x], then we say α is a quadratic root over F. We call F(α) a
quadratic extension of F.
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Example 240: α =
√

2 is a quadratic root over Q, because q(α) = 0, where q(x) = x2− 2.
Thus, Q(

√
2) is a quadratic extension of Q.

Recall that F has characteristic 2 if 1 + 1 = 0 in F. For example, Z/2 has characteristic
2. However, Q, R, C do not have characteristic 2; nor does Z/p, for p > 2.

Proposition 241 Suppose F does not have characteristic 2. Let E ⊃ F. The following are

equivalent:

(a) E is a quadratic extension of F.

(b) E = F(
√
D) for some D ∈ F which is not the square of any other element in F.

(c) deg
(

E ⊃ F
)

= 2.

Proof: (a)=⇒(b) Suppose E = F(α), where α is a quadratic root. Thus, q(α) = 0, or
some quadratic polynomial q(x) = x2 + bx+ c.

The roots of q are given by the Quadratic Formula:

α =
b±
√
b2 − 4c

2
.

(It is elementary to verify that this holds in any field not of characteristic 2; we need char-
acteristic 6= 2 because the formula calls for division by 2).

Let D = b2 − 4c; then D ∈ F. I claim that F(α) = F(
√
D). To see this, it suffices to show

that α ∈ F(
√
D) and that

√
D ∈ F(α).

To see that α ∈ F(
√
D), observe that α = 1

2
(b±

√
D).

To see that
√
D ∈ F(α), observe that

√
D = 2α− b.

(b)=⇒(a) This is immediate.

(a)=⇒(c) Suppose E = F(α), where α is a quadratic root. Then Proposition 232 implies

that deg
(

F(α) ⊃ F
)

= 2.

(c)=⇒(a) Let α ∈ E such that α 6∈ F.

Claim 1: α is a quadratic root over F

Proof: Note that E is a 2-dimensional F-vector space. Hence, the elements {1, α, α2}
cannot be F-linearly independent. Thus, there are f0, f1, f2 ∈ F (not all zero) such that

f0 + f1α + f2α
2 = 0. (11.5)

We know that f2 6= 0, because
(

f2 = 0
)

=⇒
(

f0 + f1α = 0
)

=⇒
(

α = −f0/f1 ∈ F
)

,
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and we specified α 6∈ F. Hence, we can divide equation (11.5) by f2, to obtain:

q0 + q1α + α2 = 0,

where q0 = f0/f2 and q1 = f1/f2. In other words, q(α) = 0, where q(x) = x2 + q1x+ x0 is
a quadratic polynomial. .............................................. 2 [Claim 1]

It remains to show that E = F(α). To see this, observe that

2 = deg
(

E ⊃ F
)

≥ deg
(

F(α) ⊃ F
)

> 1.

Hence, we must have deg
(

F(α) ⊃ F
)

= 2, which means F(α) = E. 2

We say that E is a multiquadratic extension of F if we have a sequence of extensions

F = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ EN = E,

where En is a quadratic extension of En−1 for all n ≥ 1.

Corollary 242 If E ⊃ F is a multiquadratic extension, then deg
(

E ⊃ F
)

= 2n for some n.

Proof: Exercise 176 Hint: Combine Proposition 241(c) with Theorem 236(a) on page 194. 2

Note that the converse of this is false: if deg
(

E ⊃ F
)

= 2n, it is not necessarily true that

E is multiquadratic over F.

Example 243:

(a) Consider Q(
√

2,
√

3). Clearly, Q ( Q(
√

2) ⊆ Q(
√

2,
√

3).

Claim 1:
√

3 6∈ Q(
√

2).

Proof: If
√

3 ∈ Q(
√

2), then there are rational numbers a, b ∈ Q such that
√

3 = a+ b
√

2. (11.6)

First observe that a 6= 0 6= b. To see this, suppose b = 0; then equation (11.6) becomes√
3 = a —that is,

√
3 ∈ Q, which we know is false.

Now suppose a = 0; then equation (11.6) becomes
√

3 = b
√

2. Multiply by
√

2 to get:√
6 = 2b, meaning ,

√
6 ∈ Q, which we know is false.

Thus, ab 6= 0. Square both sides of (11.6) to get:

3 = (a+ b
√

2)2 = a2 + 2b2 − 2ab
√

2.

Since ab 6= 0, this implies:
√

2 =
3− a2 − 2b2

−2ab
,

which means
√

2 ∈ Q, which we know is false. ...................... 2 [Claim 1]
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Claim 2: Q(
√

2,
√

3) is a quadratic extension of Q(
√

2).

Proof: Claim 1 implies that Q(
√

2) ( Q(
√

2,
√

3). Also the minimal polynomial
of
√

3 over Q(
√

3) is m√3(x) = x2 − 3 (because m√3(x) is irreducible over Q(
√

2), by
Claim 1). ........................................................ 2 [Claim 2]

But Q(
√

2) itself is a quadratic extension of Q. Thus, Q(
√

2,
√

3) is a multiquadratic
extension of Q.

Furthermore, Theorem 236(a) implies:

deg
(

Q(
√

2,
√

3) ⊃ Q
)

= deg
(

Q(
√

2,
√

3) ⊃ Q(
√

2)
)

· deg
(

Q(
√

2) ⊃ Q
)

= 2 · 2
= 4.

This means that Q(
√

2,
√

3) is a 4-dimensional vector space over Q. Claim 1 shows that
{1,
√

2,
√

3} is a linearly independent set. Similar reasoning shows that {1,
√

2,
√

3,
√

6}
is also linearly independent, hence, a basis. We conclude:

Every element of Q(
√

2,
√

3) has the form a+ b
√

2 + c
√

3 + d
√

6, for unique
rational numbers a, b, c, d ∈ Q.

(b) Consider Q( 4
√

2). Since
√

2 = ( 4
√

2)2, it follows that
√

2 ∈ Q( 4
√

2); hence

Q ( Q(
√

2) ⊆ Q(
4
√

2).

Claim 3: 4
√

2 6∈ Q(
√

2).

Proof: Exercise 177 Hint: Imitate the proof of Claim 1 above. ...... 2 [Claim 3]

Thus, Q(
√

2) ( Q( 4
√

2). Since 4
√

2 =
√√

2, it follows thatQ( 4
√

2) is a quadratic extension
of Q(

√
2), and thus, a multiquadratic extension of Q.

Example 〈243a〉 generalizes as follows:

Proposition 244 Let F ⊂ C, and let α1, α2, . . . , αn ∈ F. Then:

(a) F(
√
α1,
√
α2, . . . ,

√
αn) is a multiquadratic extension of F.

(b) deg
(

F(
√
α1,
√
α2, . . . ,

√
αn) ⊃ F

)

= 2m, for some m ≤ n.

Proof: Exercise 178 Hint: proceed by induction on n. 2

The following result is reminiscent of Theorem 236 on page 194:
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Proposition 245 If D is a multiquadratic extension of E, and E is a multiquadratic extension

of F, then D is a multiquadratic extension of F.

Proof: Exercise 179 2

A ‘subextension’ of a multiquadratic extension is also multiquadratic:

Proposition 246 If D is a multiquadratic extension of F, and F ⊂ E ⊂ D, then E is also a

multiquadratic extension of F.

Proof: Exercise 180 2

11.5 Compass & Straight-Edge Constructions II

Prerequisites: §11.1, §11.4

Let K ⊂ R be the field of constructable lengths, from Proposition 225 on page 181 of §11.1.

Proposition 247 Let κ ∈ K. Then:

(a) Q(κ) is a multiquadratic extension of Q.

(b) Thus, deg
(

Q(κ) ⊃ Q
)

= 2n for some n ∈ N.

Proof: Part 1 of Proposition 225 says that K is the smallest subfield of R which contains Q
and is closed under square roots.

We will first construct another subfield K∞ ⊂ R so that Q ⊂ K∞ and K∞ is closed under
square roots. We proceed as follows:

• Let K1 ⊂ R be the smallest subfield containing Q and the square roots of all elements
in Q (thus, K1 contains

√
2,
√

3, etc.)

• Let K2 ⊂ R be the smallest subfield containing K1 and the square roots of all elements

in K1 (thus, K2 contains 4
√

2 =
√√

2,
√√

2 +
√

3, etc.)

• ....inductively, let Kn+1 be the smallest subfield containing Kn and the square roots of
all elements in Kn.

We now have an ascending sequence of field extensions:

Q ⊂ K1 ⊂ K2 ⊂ K3 ⊂ · · ·

Now, let K∞ =
∞
⋃

n=1

Kn.

Claim 1: K∞ is a field, and is closed under square roots.
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Proof: Exercise 181 ................................................ 2 [Claim 1]

Clearly, Q ⊂ K∞ ⊂ R. It follows from Claim 1 and Proposition 225 (Part 1) that K ⊂ K∞.
(Actually, K = K∞, but this is not important for our purposes.)

Now suppose that κ ∈ K. It follows that κ ∈ K∞. But this means that κ ∈ Kn for some
n ∈ N. It thus suffices to show:

Claim 2: If κ ∈ Kn for some n, then Q(κ) is a multiquadratic extension of Q.

Proof: (by induction on n)

Base Case (n = 1): If κ ∈ K1, this means that

κ = a0 + a1

√

b1 + a2

√

b2 + . . .+ am
√

bm,

for some a0, a1, . . . , am and b1, . . . , bm ∈ Q. Thus, κ ∈ Q(
√
b1, . . . ,

√
bn), and thus, Q(κ) ⊂

Q(
√
b1, . . . ,

√
bn).

But Proposition 244(a) says Q(
√
b1, . . . ,

√
bn) is a multiquadratic extension of Q. Since

Q(κ) ⊂ Q(
√
b1, . . . ,

√
bn), it follows from Proposition 246 that Q(κ) is also a multiquadratic

extension of Q.

Induction: If κ ∈ Kn, then κ = α0 + α1

√
β1 + α2

√
β2 + . . . + αm

√
βm, for some

α0, α1, . . . , αm and β1, . . . , βm ∈ Kn−1. Let F = Q(α0, α1, . . . , αm, β1, . . . , βm). Then:

• By identical reasoning to the Base Case, F(κ) is a multiquadratic extension of F.

• By induction hypothesis, F is a multiquadratic extension of Q.

• Thus, Proposition 245 implies that F(κ) is a multiquadratic extension of Q.

But Q(κ) ⊂ F(κ), so Proposition 246 implies that Q(κ) is a multiquadratic extension of
Q. .................................................................. 2 [Claim 2]

Part (b) of our theorem follows from part (a) and Corollary 242. 2

Corollary 248 It is impossible to do any of the following using only compass and straight-

edge:

I Trisect an arbitrary angle.

II Square the circle.

III Double the Cube.

Proof: (II) Doubling the Cube is equivalent to constructing 3
√

2. But Q( 3
√

2) is a degree-3
extension of Q, contradicting Proposition 247(b) (because 3 is not a power of 2). Thus, 3

√
2

cannot be in K.
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(III) Squaring the circle is equivalent to constructing
√
π, and hence constructing π. But

π is transcendental over Q, so Q(π) is an infinite extension of Q, contradicting Proposition
247(b) (because ∞ is not a power of 2). Thus, π cannot be in K.

(I) Let Θ be some angle and let θ = 1
3
Θ. Thus, Θ = 3θ. Let α = cos(θ). We’ll show that,

in general, Q(α) is not a multiquadratic extension of Q; hence α cannot be in K.

Claim 1: cos(Θ) = 4α3 − 3α.

Proof: We employ some standard trigonometric identities...

cos(Θ) = cos(3θ) = cos(θ + 2θ)
= cos(θ) · cos(2θ)− sin(θ) · sin(2θ)

= cos(θ) ·
(

2 cos2(θ)− 1
)

− sin(θ) · 2 sin(θ) cos(θ)

= 2 cos3(θ)− cos(θ) − 2 sin2(θ) · cos(θ)

= 2 cos3(θ)− cos(θ) − 2
(

1− cos2(θ)
)

· cos(θ)

= 2 cos3(θ)− cos(θ) − 2 cos(θ) + 2 cos3(θ)
= 4 cos3(θ) − 3 cos(θ) = 4α3 − 3α. . . . . . . . . . . . ........... 2 [Claim 1]

Let Θ = 60o. Then Θ is a constructable angle, and cos(Θ) = 1
2
. Thus Claim 1 says:

1

2
= 4α3 − 3α.

In other words, p(α) = 0, where p(x) = 4x3− 3x− 1
2
. It can be checked that p is irreducible

over Q. Thus, p(x) is the minimal polynomial of α over Q, and Proposition 232(c3) says
that Q(α) is an extension of degree 3 over Q. But 3 is not a power of 2, so Proposition 247(b)
says that α cannot be in K. 2

11.6 Cyclotomic Extensions

Prerequisites: §11.3

Let F be a field. If n ∈ N, then an nth root of unity is a number ζ ∈ F so that ζn = 1.

Example 249:

(a) Let F = C. The Nth roots of unity (for N = 1, 2, 3, 4, 5, 6) are shown in Figure 11.14 and
listed in the following table:
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1 -1 1 1

-1
2

3
2

i+

-1
2

3
2

i-

1st root
of unity

Square roots
of unity

Cube roots
of unity

-1 1

i

-i

1

e2πi/5

e4πi/5

e6πi/5

e8πi/5

4th roots
of unity

5th roots
of unity

e2πi/3=

e4πi/3=

1

6th roots
of unity

e4πi/6

e8πi/6

e2πi/6

e10πi/6

-1

Figure 11.14: Roots of unity in the complex plane.

N Nth roots of unity
N = 1 1.
N = 2 1 and −1.

N = 3 1, e2πi/3 =
−1

2
+

√
3

2
i, and e4πi/3 =

−1

2
−
√

3

2
i.

N = 4 1, i, −1, and −i.
N = 5 1, e2πi/5, e4πi/5, e6πi/5, and e8πi/5.
N = 6 1, eπi/3, e2πi/3, e3πi/6 = −1, e4πi/3, and e5πi/6.

In general, for any n ∈ N, the nth roots of unity are: 1, e2πi/n, e4πi/n, . . . , e
2(n−1)πi

n (see
Lemma 250(a) below).

As Figure 11.14 suggests, the nth roots of unity form a set of n equally spaced points
around the unit circle in the complex plane. There is thus a relationship between nth
roots of unity and the construction of a regular n-gon (see §11.7)

(b) Let F = Z/5. Then 1, 2, 3 and 4 are all 4th roots of unity:

14 = 1;

24 = 16 ≡ 1 (mod 5);

34 = 81 ≡ 1 (mod 5);

44 = 256 ≡ 1 (mod 5).



206 CHAPTER 11. FIELD THEORY

(c) Let F = Z/p, for some prime p. Then all nonzero elements of Z/p are (p − 1)th roots of
unity. In other words, we have:

Fermat’s Little Theorem: zp−1 ≡ 1 (mod p), whenever z 6≡ 0 (mod p).

Proof: Let Z/p× = {1, 2, . . . , (p−1)}, and note that Z/p× forms a group of order (p−1)
under multiplication. Thus, if z ∈ Z/p×, then the (multiplicative) order of z divides p−1,
so that zp−1 = 1.

Lemma 250 Let Zn be the set of all nth roots of unity in C. Then

(a) Zn =
{

1, e2πi/n, e4πi/n, . . . , e
2(n−1)πi

n

}

. Thus, card [Zn] = n.

(b) Zn is a cyclic group under multiplication, and is generated by e2πi/n.

(c) Zn is isomorphic to Z/n via the map ψ : Z/n 3 k 7→ e
2kπi
n ∈ Zn.

(d) If d ∈ {1, 2, . . . , n}, then
(

d divides n
)

⇐⇒
(

Zd ⊂ Zn
)

.

Proof: (a,c) Exercise 182 .

(b) First note that Zn is closed under multiplication: if ζ1, ζ2 ∈ Zn, then

(ζ1 · ζ2)n = ζn1 · ζn2 = 1 · 1 = 1; hence (ζ1 · ζ2) ∈ Zn also.

Thus, Zn forms a group. It is clear that all elements of Zn are powers of e2πi/n, so e2πi/n

generates Zn, so Zn is cyclic.

(d) Recall that ζ = e
2πi
d generates Zd. Thus,

(

Zd ⊂ Zn
)

⇐⇒
(

ζ ∈ Zn
)

⇐⇒
(

ζn = 1
)

⇐⇒
(

e
2nπi
d = 1

)

⇐⇒
(

2nπ
d

is an integer multiple of 2π
)

⇐⇒
(

n
d

is an integer
)

⇐⇒
(

d divides n
)

. 2

The nth cyclotomic field1 is the field

CFn = Q
(

e2πi/5, e4πi/n, . . . , e
2(n−1)πi

n

)

,

generated by all nth roots of unity over the rational numbers. Our first task is to show that
CFn is in fact a simple extension of Q, generated by a single element: a ‘primitive’ root of unity.

Lemma 250(a) says that Zn is a group under multiplication. A primitive nth root of
unit is an element of Zn which generates Zn as a group. The following table lists the primitive
Nth roots of unity for N = 2, 3, 4, 5, 6:

1The term ‘cyclotomic’ means ‘circle-cutting’ (‘cyclo-tomic’) in Greek, and refers to the fact that the nth
roots of unity ‘cut’ the circle into n equal peices.
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N Primitive Nth roots of unity
N = 2 −1.
N = 3 e2πi/3 and e4πi/3.
N = 4 i, and −i.
N = 5 e2πi/5, e4πi/5, e6πi/5, and e8πi/5.
N = 6 e2πi/6 and e10πi/6.
N = 7 e2πi/7, e4πi/7, e6πi/7, e8πi/7, e10πi/7, and e12πi/7.
N = 8 eπi/4, e3πi/4, e5πi/4, and e7πi/4.
N = 9 e2πi/9, e4πi/9, e8πi/9, e10πi/9, e14πi/9, and e16πi/9.

Let Z∗n = {ζ ∈ Zn ; ζ a primitive root}. The primitive roots allow us to express CFn as a
simple extension of Q:

Lemma 251 If ζ ∈ Z∗n be any primitive nth root of unity, then CFn = Q(ζ).

Proof: First note that Q(ζ) ⊂ CFn. We claim that also CFn ⊂ Q(ζ). To see this, note
that Q(ζ) contains all powers of ζ; since ζ generates Zn, it follows that Q(ζ) contains all nth
roots of unity, so Q(ζ) contains CFn. 2

Our next task is to count Z∗n. We define Euler’s ϕ-function:

ϕ (n) = # of numbers j ∈ {1, 2, ..., n− 1} which are relatively prime to n.

Example 252:

(a) ϕ (5) = 4, because all of the numbers {1, 2, 3, 4} are relatively prime to 5.

(b) ϕ (16) = 8, because the numbers {1, 3, 5, 7, 9, 11, 13, 15} are relatively prime to 16.

See the Appendix at the end of this section for more about the ϕ-function.

Lemma 253

(a) If ζ ∈ Zn, then
(

ζ ∈ Z∗n
)

⇐⇒
(

k = n− 1 is the smallest k > 0 for which ζk = 1
)

.

(b) Z∗n =
{

e2pπi/n ; where p is relatively prime to n
}

.

(c) More generally, if ζ ∈ Z∗n is any fixed element, thenZ∗n = {ζp ; p is relatively prime to n}.

(d) Thus, card [Z∗n] = ϕ (n).

(e) Zn =
⊔

d divides n

Z∗d .
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Proof: (a) If ζ ∈ Zn, then ζn−1 = 1, because |Zn| = (n − 1). Thus, ζ ∈ Z∗n if and only if
Zn = {1, ζ, ζ2, . . . , ζn−1}, and this occurs only if k = n − 1 is the smallest k > 0 for which
ζk = 1.

(b,c) follow from (a) (Exercise 183). (d) follows from the definition of ϕ (n).

(e) For all d ≤ n, we define

Z ′d =
{

ζ ∈ Zn ; k = d− 1 is the smallest k > 0 for which ζk = 1
}

.

Claim 1: Zn =
⊔

d divides n

Z ′d.

Proof: Exercise 184 . First check the following:

• If d1 6= d2, then Z ′d1
and Z ′d2

are disjoint.

• Every element of Zn must belong to Z ′d for some d.

• Z ′d = ∅ unless d divides n.

Now combine these to get the Claim. ................................. 2 [Claim 1]

Claim 2: For every d which divides n, Z ′d = Z∗d .

Proof: Observe that:

• Zd ⊂ Zn; this follows from Lemma 250(d).

• Z ′d ⊂ Zd; to see this, note that, if ζ ∈ Z ′d, then ζd = 1 by definition.

• Part (a) of the present theorem says: for any ζ ∈ Zd,
(

ζ ∈ Z∗n
)

⇐⇒
(

ζ ∈ Z ′n
)

.

It follows that Z ′d = Z∗d . ............................................. 2 [Claim 2]

(d) follows from Claims 1 and 2. 2

Remark: Note that part (d) of the theorem yields the surprising identity:

(n− 1) =
∑

d divides n

ϕ (n) .

Our next goal is to represent CFn as the splitting field of a single irreducible polynomial.
We define the nth cyclotomic polynomial:

cpn(x) =
∏

ζ∈Z∗n

(x− ζ). (11.7)
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This is the ‘smallest’ polynomial having all elements of Z∗n as roots. For example:

x− (1) = cp1(x) = x− 1;
x− (−1) = cp2(x) = x+ 1;

(

x− e
2πi
3

)

·
(

x− e
4πi
3

)

= cp3(x) = x2 + x+ 1;
(x+ i) · (x− i) = cp4(x) = x2 + 1;

(

x− e
2πi
5

)

·
(

x− e
4πi
5

)

·
(

x− e
6πi
5

)

·
(

x− e
8πi
5

)

= cp5(x) = x4 + x3 + x2 + x+ 1;
(

x− e
πi
3

)

·
(

x− e
5πi
3

)

= cp6(x) = x2 − x+ 1;

(

x− e
2πi
7

)

·
(

x− e
4πi
7

)

·
(

x− e
6πi
7

)

·
(

x− e
8πi
7

)

·
(

x− e
10πi

7

)

·
(

x− e
12πi

7

)

= cp7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1;

(

x− e
πi
4

)

·
(

x− e
3πi
4

)

·
(

x− e
5πi
4

)

·
(

x− e
7πi
4

)

= cp8(x) = x4 + 1;

(

x− e
2πi
9

)

·
(

x− e
4πi
9

)

·
(

x− e
8πi
9

)

·
(

x− e
10πi

9

)

·
(

x− e
14πi

9

)

·
(

x− e
16πi

9

)

= cp9(x) = x6 + x3 + 1;
...

...
...

This partial list suggests that cpn(x) always has integer coefficients, something which is not
obvious from equation (11.7).

Proposition 254

(a) cpn(x) is a monic, irreducible polynomial with integer coefficients.

(b) degree
(

cpn(x)
)

= ϕ (n).

(c) For any n ∈ N, (xn − 1) =
∏

d divides n

cpd(x).

Proof: (b) cpn(x) is a product of ϕ (n) linear factors. Thus, degree (cpn(x)) = ϕ (n).

(c) The roots of (xn − 1) are exactly the nth roots of unity. Hence, (xn − 1) factors
completely over CFn:

xn − 1 =
∏

ζ∈Zn

(x− ζ). (11.8)

But Lemma 253(d) says Zn =
⊔

d divides n

Z∗d . Hence, we can rewrite equation (11.8) as:

xn − 1 =
∏

d divides n

∏

ζ∈Z∗n

(x− ζ) =
∏

d divides n

cpd(x),

where the last equality is just the equation (11.7) which defines cpd(x). 2
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The proof of part (a) will require three preliminary lemmas.

Lemma 255 Let E ⊃ Q be a field extension. Let q(x) ∈ Q[x] and e(x) ∈ E[x], and let

p(x) = q(x) · e(x). If p(x) ∈ Q[x], then e(x) ∈ Q[x] also.

Proof: Apply the Division Algorithm to divide p(x) by q(x) in Q[x]. We get unique
polynomials s(x) and r(x) in Q[x] such that

p(x) = s(x) · q(x) + r(x), and degree (r(x)) < degree (q(x)) . (11.9)

Now, the Division Algorithm yields a unique solution in any polynomial ring, and equation
(11.9) is also valid in the ring E[x]; hence, q(x) and r(x) are the unique elements in E[x] such
that (11.9) is true.

However, we already have a division equation in E[x], namely:

p(x) = q(x) · e(x).

Hence, we conclude: e(x) = s(x) (and r(x) = 0). In other words, e(x) ∈ Q[x]. 2

(Remark: Lemma 255 holds for any field, not just Q.)

Lemma 256 (Gauss’ Lemma)

Suppose that q(x) ∈ Z[x] is monic, and let e(x) ∈ Q[x]. Let p(x) = q(x) · e(x).

If p(x) ∈ Z[x], then e(x) ∈ Z[x] also.

Proof: Suppose e(x) = e0 +e1x+e2x
2 + . . .+enx

n, where e0, . . . , en ∈ Q. Let D be the lowest
common multiple of the denominators of e0, . . . , en. I claim D = 1 —ie. all of e0, . . . , en are
actually integers.

To see this, let

e′(x) = D · e(x) = e′0 + e′1x+ e′2x
2 + . . .+ e′nx

n,

where e′0 = D · e0, e′1 = D · e1, etc. Thus, e′(x) has all integer coefficients, and we have:

D · p(x) = q(x) · e′(x). (11.10)

Let p be a prime divisor of D.

Claim 1: p divides all of e′0, . . . , e
′
n.
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Proof: Reduce all coefficients in p(x), q(x), and e′(x) modulo p. Then equation (11.10)
becomes:

0 = q(x) · e′(x), (11.11)

an equation in the polynomial ring Z/p[x]. But:

(

p is prime
)

=Exmpl〈107〉⇒
(

Z/p is a field
)

=Exmpl〈109g〉⇒
(

Z/p[x] is an integral domain
)

.

Thus, equation (11.11) implies that either q(x) = 0 or e′(x) = 0. In other words, either
all coefficients in q are congruent to zero mod p, or all coefficients in e′ are zero mod p.

Now, q(x) is monic. That is, q(x) = xn + qn−1x
n−1 + . . . + q1x + q0. Thus, q(x) =

xn + qn−1x
n−1 + . . .+ q1x+ q0 has a nonzero leading coefficient, so q(x) cannot be zero.

It follows that e′0 ≡ . . . ≡ e′n ≡ 0 (mod p). Thus, all coefficients e′0, . . . , e
′
n of e′ must be

divisible by p. ....................................................... 2 [Claim 1]

But D is the lowest common multiple of the denominators of e0, . . . , en, so e′0, . . . , e
′
n cannot

have any common factors. Contradiction.

We conclude that D = 1, which means that e0, . . . , en were integers all along. 2

Lemma 257 If ζ, ξ ∈ Z∗n are any two primitive roots of unity, then there is a field automor-

phism Φ : CFn−→CFn such that:

(a) Φ(ζ) = ξ.

(b) Φ acts as the identity on Q.

Proof: Lemma 251 says that Q(ζ) = CFn = Q(ξ). Thus, every element of CFn has the form
q0 + q1ζ + q2ζ

2 + . . . + qn−1ζ
n−1 for some (not necessarily unique) q1, . . . , qn−1 ∈ Q. Define

the map Φ : CFn−→CFn by

Φ(q0 + q1ζ + q2ζ
2 + . . .+ qn−1ζ

n−1) = q0 + q1ξ + q2ξ
2 + . . .+ qn−1ξ

n−1.

Clearly, Φ(ζ) = ξ, and thus, Φ (Q(ζ)) = Q(ξ) —in other words, Φ(CFn) = CFn. Also, Φ
acts as the identity on Q (because Φ(q0) = q0). It is Exercise 185 to verify that Φ is a field
automorphism. 2

Proof of Proposition 254(a) cpn(x) is a product of monic linear polynomials, so it is
monic.

Claim 1: cpn(x) has integer coefficients —ie. cpn(x) ∈ Z[x].
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Proof: (by induction on n).

Assume that cpd(x) ∈ Z[x] for all d < n.

Let p(x) = xn − 1. From (c), we know that

p(x) =
∏

d divides n

cpd(x) = q(x) · cpn(x), where q(x) =
∏

d<n
d divides n

cpd(x).

By induction, cpd(x) ∈ Z[x] for all d < n; hence, q(x) ∈ Q[x]. Also, clearly, p(x) ∈ Q[x].
Apply Lemma 255 (with E = CFn and e(x) = cpn(x)) to conclude that cpn(x) ∈ Q[x]
also.

Now observe that p(x) ∈ Z[x] and q(x) ∈ Z[x], and that q(x) is monic. It follows from
Gauss’ Lemma (Lemma 256) that cpn(x) ∈ Z[x]. ...................... 2 [Claim 1]

cpn(x) is irreducible: Suppose not. Then cpn(x) = p(x) · q(x) for some p(x) and q(x) in

Q[x]. But equation (11.7) says cpn(x) =
∏

ζ∈Z∗n

(x− ζ), so this means that there are subsets

P,Q ⊂ Z∗n so that Z∗n = P tQ, and p(x) =
∏

ζ∈P

(x− ζ), and q(x) =
∏

ζ∈Q

(x− ζ).

Now, let ζ ∈ P and ξ ∈ Q. By Lemma 255 we can define an automorphism Φ : CFn−→CFn
so that Φ(ζ) = ξ and Φ acts as the identity on Q.

Since, Φ acts as the identity on Q, it follows that Φ
(

p(x)
)

= p(x). But p(x) =
∏

ζ∈P

(x− ζ),

so this means that Φ(P) = P. But Φ(ζ) = ξ ∈ Q; a contradiction.

By contradiction, the hypothetical factorization cannot exist: cpn(x) is irreducible. 2

Remark: In this proof, we built an automorphism of CFn which permuted the roots of
cpn(x), and used this to deduce information about the structure of cpn(x). This use of auto-
morphisms of field extensions (especially those which permute the roots of some polynomial)
is the key concept of Galois Theory.

Corollary 258

(a) cpn(x) is the minimal polynomial (over Q) for any primitive nth root of unity.

(b) deg
(

CFn ⊃ Q
)

= ϕ (n).

Proof: (a) Let ζ be a primitive nth root of unity. Then cpn(x) is irreducible, monic, and
has ζ as a root, so cpn(x) is the minimal polynomial for ζ, according to Proposition 232(c).

(b) This follows from part (a), Proposition254(b), and Proposition 232(c3). 2
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Appendix: Euler’s ϕ-function

We define Euler’s ϕ-function:

ϕ (n) = # of numbers j ∈ {1, 2, ..., n− 1} which are relatively prime to n.

Example 259:

(a) ϕ (7) = 6, because all of the numbers {1, 2, 3, 4, 5, 6} are relatively prime to 7.

(b) In general, if p is prime, then ϕ (p) = p − 1, because all of the numbers {1, 2, ..., p − 1}
are relatively prime to p.

(c) ϕ (25) = 20, because the numbers {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}
are relatively prime to 25. The only numbers not relatively prime to 25 are the multiples
of 5, namely {5, 10, 15, 20}.

(d) ϕ (15) = 8, because the numbers {1, 2, 4, 7, 8, 11, 13, 14} are relatively prime to 25. Note
that 15 = 3 · 5, and 8 = 2 · 4 = ϕ (3) ·ϕ (5).

These examples illustrate the general rule:

Proposition 260 Properties of Euler’s ϕ-function

(a) If p is prime, and n ∈ N, then ϕ (pn) = p(n−1) · (p− 1).

(b) If n and m are relatively prime, then ϕ (n ·m) = ϕ (n) ·ϕ (m).

(c) If n has prime factorization n = pν1
1 ·ν2

2 · · · p
νk
k , then

ϕ (n) = p
(ν1−1)
1 · (p1 − 1) · p(ν2−1)

2 · (p2 − 1) · · · p(νk−1)
k · (pk − 1).

Proof: (a) Note that the only numbers in {1, 2, . . . , pn−1} which are not relatively prime
to pn are the multiples of p, namely {p, 2p, . . . , pn − p}. There are exactly pn−1 of these,
leaving pn − pn−1 = pn−1(p− 1) relatively prime elements.

(b) Exercise 186 . (c) follows by combining (a) and (b). 2

11.7 Compass & Straight-Edge Constructions III

Prerequisites: §11.1, §11.4, §11.6 Recommended: §11.5

We will now characterize the regular polygons can be constructed with compass and straight-
edge. Let K ⊂ R be the field of constructable lengths, from Proposition 225 in §11.1. Recall
Proposition 247 from §11.5:
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Proposition 247 Let κ ∈ K. Then:

(a) Q(κ) is a multiquadratic extension of Q.

(b) Thus, deg
(

Q(κ) ⊃ Q
)

= 2n for some n ∈ N. 2

A Fermat prime is a prime number of the form p = 2(2n) + 1 for some n. For example:

3 = 21 + 1 = 2(20) + 1 is prime.

5 = 22 + 1 = 2(21) + 1 is prime.

17 = 24 + 1 = 2(22) + 1 is prime.

257 = 28 + 1 = 2(23) + 1 is prime.

65537 = 216 + 1 = 2(24) + 1 is prime.

(However, 232 + 1 is not prime, because it is divisible by 641.) It is an open problem whether
there are infinitely many Fermat primes.

Proposition 261
(

The regular N -gon is constructable with compass & straight-edge
)

⇐⇒

(

N = 2n · p1 · p2 · · · pk, where p1, p2, . . . , pn are distinct Fermat primes
)

.

Thus, a regular N -gon is constructable if and only if N is one of the following values:

2 4 8 16 32 64 . . .
3 6 12 24 48 92 . . .
5 10 20 40 80 160 . . .
15 30 60 120 240 480 . . .
17 34 68 136 272 544 . . .
51 102 204 408 816 1632 . . .
85 170 340 680 1360 2720 . . .
257 514 1028 2056 4112 8224 . . .

...
...

...
...

...
...

. . .

However, a regular N -gon is not constructible if N is one of:

7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, . . .

Proof of Proposition 261: We will only prove “=⇒”. Let ζ = e2πi/N , a primitive Nth
root of unity. Write ζ = zr + zii, where zr, zi ∈ R.

Claim 1:
(

The regular N -gon is constructable with compass & straight-edge
)

⇐⇒
(

zr and zi are in K.
)
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Proof: Constructing the N -gon is equivalent to cutting the circle into N equal segments,
which is equivalent to constructing the angle 2π/N , which is equivalent to construct-
ing the lengths cos(2π/N) and sin(2π/N). But zr = cos(2π/N) and zi = sin(2π/N).
2 [Claim 1]

Claim 2:
(

zr and zi are in K.
)

=⇒
(

ϕ (N) is a power of 2
)

.

Proof: Let E = Q(zr, zi).

Claim 2.1: deg
(

Q(ζ) ⊃ E
)

= 2.

Proof: First note that Q(ζ) ⊂ E(i), because ζ = zr + zii. Thus, deg
(

Q(ζ) ⊃ E
)

≤

deg
(

E(i) ⊃ E
)

= 2. But deg
(

Q(ζ) ⊃ E
)

can’t be 1 (because E is a subset of R, whereas

Q(ζ) contains complex numbers). So deg
(

Q(ζ) ⊃ E
)

must be 2. ... 2 [Claim 2.1]

. Next, observe that:

• deg
(

Q(ζ) ⊃ Q
)

= ϕ (N), by Corollary 258(b) (because ζ is a primitive Nth root of

unity).

• deg
(

Q(ζ) ⊃ Q
)

= deg
(

Q(ζ) ⊃ E
)

· deg
(

E ⊃ Q
)

, by Theorem 236(a).

It follows that ϕ (N) = 2 · deg
(

E ⊃ Q
)

. But Proposition 247(b) says:

(

zr and zi are in K.
)

=⇒
(

deg
(

E ⊃ Q
)

is a power of 2
)

.

It follows that ϕ (N) is also a power of 2. ............................. 2 [Claim 2]

Claim 3:
(

ϕ (N) is also a power of 2
)

⇐⇒
(

N = 2n · p1 · p2 · · · pk, where p1, p2, . . . , pn are distinct Fermat primes
)

.

Proof: Suppose N has prime factorization: N = 2n · pν1
1 · pν2

2 · · · p
νk
k .

Then Proposition 260(c) says that

ϕ (N) = 2n−1p
(ν1−1)
1 · (p1 − 1) · p(ν2−1)

2 · (p2 − 1) · · · p(νk−1)
k · (pk − 1).

Thus, ϕ (N) is a power of 2 if and only if:

• ν1 = ν2 = . . . = νk = 1,

• (p1 − 1), (p2 − 1), . . ., and (pk − 1) are powers of 2.

In other words, p1 = 2n1 + 1, . . ., pk = 2nk + 1, for some n1, . . . , nk ∈ N. It remains to show
that, p1, . . . , pk must be Fermat primes —ie. that n1, . . . , nk must themselves be powers of
2. This follows from Claim 4 below. .................................. 2 [Claim 3]
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Claim 4: If p = 2n + 1 is a prime number, then n must be a power of 2.

Proof: Exercise 187 . .............................................. 2 [Claim 4]

The proof of the converse in the theorem requires Galois theory, and is beyond our scope. 2
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Figure 11.15: E is the unique minimal root extension of F for the polynomial p(x).

11.8 Minimal Root Extensions

Prerequisites: §11.2 Recommended: §??

Normally, the reason we ‘extend’ the field F is to find solutions to polynomial equations.
For example, it is irritating that the equation

x2 + 1 = 0 (11.12)

has no solutions x ∈ R. Thus, we extend R to the larger field C, which is specifically designed
so that the equation (11.12) has solutions (namely x = ±i).

Recall that a root of the polynomial p(x) is some ε ∈ E so that p(ε) = 0. Thus, the
polynomial p(x) = x2 +1 has roots ε = ±i. We often extend fields by ‘adjoining’ roots to them;
for example, we get C be ‘adjoining’ the root i to R. The generalization of this procedure is
the following proposition. On first reading, imagine F = R, p(x) = x2 + 1, E = C, and ε = i
(see Example 171 on page 143)

Proposition 262 (Minimal Root Extension) Let F be any field and let p(x) ∈ F[x] be an

irreducible polynomial.
There is a unique field extension E ⊃ F such that:

(a) p(x) has a root in E —in other words, there is some ε ∈ E so that p(ε) = 0.

(b) E is the minimal extension with this property. In other words, suppose D ⊃ F is
another extension of F, and δ ∈ D is a root of p(x) (see Figure 11.15A). Then there is a
subfield E′ ⊂ D (see Figure 11.15B) so that

• F ⊂ E′ and δ ∈ E′;
• E ∼= E′, via an isomorphism Ψ : E−→E′ such that:
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– Ψ(ε) = δ;

– Ψ|F = Id.

(c) deg
(

E ⊃ F
)

= degree (p(x)).

(d) An F-basis for E is given by the elements {1, ε, ε2, . . . , εn−1}, where n = degree (p(x)).

Proof: (a) Let I ⊂ F[x] be the principal ideal generated by p(x), and let E = F[x]/I.

Claim 1: E is a field.

Proof: This follows from Proposition 170, whose proof we recapitulate:
(

p(x) is irreducible.
)

= Prop.165⇒
(

I is a maximal ideal.
)

= Cor.167⇒
(

E is a field.
)

.

2 [Claim 1]

Let Φ : F[x]−→E be the quotient map. For any polynomial q ∈ F[x], let q = Φ(q) be the
corresponding element of E. Recall that F ⊂ F[x] (since elements of F can be treated as
constant polynomials). Let F ⊂ E be the image of F in E.

Claim 2: F ∼= F.

Proof: Exercise 188 ................................................ 2 [Claim 2]

Thus, we will identify F with F, and think of it F as a subfield of E.

Now, consider the polynomial x ∈ F[x]. Let ε = x

Claim 3: p(ε) = 0.

Proof: p(ε) = p(x) = p(x) = Φ(p) = 0, by definition. .............. 2 [Claim 3]

Proof of (d) (This is very similar to the proof of Proposition 232(b4)).

We must show that the set {1, ε, ε2, . . . , εn−1} is both linearly independent and a spanning set
for E as an F-vector space.

Spanning Set:

Claim 4: Every element of E has the form f0 + f1ε + f2ε
2 + . . . + fmε

m for some m ∈ N
and f0, . . . , fm ∈ F.

Proof: If e ∈ E, then e = f(x), for some polynomial f(x) ∈ F[x]. Suppose f(x) = f0 +f1x+
f2x

2 + . . .+fmx
m; then f(x) = f 0 +f 1x+f 2x

2 + . . .+fmx
m = f0 +f1ε+f2ε

2 + . . .+fmε
m.

2 [Claim 4]

Claim 5: If m ≥ n, then εm = r0 + r1ε + r2ε
2 + . . . + rn−1ε

n−1 for some coefficients
r0, . . . , rn−1 ∈ F.
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Proof: Apply Polynomial Long Division to write xm = p(x)q(x) + r(x) for some
q, r ∈ F[x], where r(x) is a polynomial of degree less than n. Then

εm = xm = p(x)q(x) + r(x) = r(ε). (because p(x) = 0)

Thus, if r(x) = r0 + r1x+ r2x
2 + . . .+ rn−1x

n−1, then εm = r0 + r1ε+ r2ε
2 + . . .+ rn−1ε

n−1.
2 [Claim 5]

Combine Claims 4 and 5 to conclude that {1, ε, ε2, . . . , εn−1} spans E.

Linearly Independent: Suppose that f0 + f1ε + f2ε
2 + . . . + fn−1ε

n−1 = 0 for some
f0, . . . , fn−1 ∈ F; we want to show that f0 = f1 = . . . = fn−1 = 0.

Let f(x) = f0+f1x+f2x
2+. . .+fn−1x

n−1, a polynomial in F[x]. Then we have f(x) = f(ε) = 0,
which means that f(x) ∈ I, which means that p(x) divides f(x). Thus, either f = 0, or
degree (f) ≥ degree (p) = n. But degree (f) ≤ n − 1 by construction, so this is impossible.
We conclude that f = 0 —in other words, f0 = f1 = . . . = fn−1 = 0.

Proof of (c) This follows immediately from (d).

Proof of (b) Let D be some other extension of F, and suppose δ ∈ D was a root of p(x)
—ie. p(δ) = 0. From (d), we know that every element of E has the form f0 + f1ε + f2ε

2 +
. . .+ fn−1ε

n−1 for some f0, . . . , fn−1 ∈ F. Define Ψ : E−→D as follows:

Ψ
(

f0 + f1ε+ f2ε
2 + . . .+ fn−1ε

n−1
)

= f0 + f1δ + f2δ
2 + . . .+ fn−1δ

n−1

It is Exercise 189 to check that Ψ is a field monomorphism. Thus, if E′ = Ψ(E), then E′ is
isomorphic to E, and is a subfield of D. Clearly, Ψ acts as the identity on F, so F ⊂ E′. 2

We call E the minimal root extension of F induced by the irreducibe polynomial p(x).
It follows from the proof of Proposition 262(d) that elements of E can be treated as ‘poly-

nomials’ in the symbol ε, of degree less than n. The multiplication of two elements of E is then
equivalent to multiplying these polynomials, subject to the reduction provided by Claim 5.

Since E is obtained by ‘adjoining’ the root ε to F, and since elements of E are ‘polynomials
in ε’, we often write “E = F(ε)”.

Example 263:

(a) Let F = R and let p(x) = x2 +1. Then the root extension E = R[x]/(x2 +1) is isomorphic
to C, via the identification ε = i. Any element of c ∈ C is a ‘polynomial in i’ of degree
1 —namely, c = r1 + r2i, where r1, r2 ∈ R. The multiplication of two complex numbers
then has the form:

(r1 + r2i) · (s1 + s2i) = r1s1 + r1s2i + r2s1i + r2s2i
2

(∗)
r1s1 + (r1s2 + r2s1)i− r2s2

= (r1s1 − r2s2) + (r1s2 + r2s1)i.

Here, (∗) follows from the reduction formula: i2 = −1, which is the form which Claim 5
takes here.
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Figure 11.16: E = Z/5(
√

3) has 25 elements.

(b) Let F = Z/5. Observe that the polynomial p(x) = x2 − 3 has no roots in Z/5 (because
12 = 1 = 42 and 22 = 4 = 32). Let E = Z/5[x]/(p). Then E is an extension of Z/5 of
degree 2, generated by an element ε which satisfies ε2 − 3 = 0. Thus, we could write
ε =

√
3, so that E = Z/5(

√
3). As shown in Figure 11.16, field E contains exactly 25

elements, each of the form a+ b
√

3, where a, b ∈ Z/5.

Addition in Z/5(
√

3) takes the obvious form:

(

a1 + b1

√
3
)

+
(

a2 + b2

√
3
)

= (a1 + a2) + (b1 + b2)
√

3.

Thus, Z/5(
√

3) is a 2-dimensional vector space over Z/5, with basis {1,
√

3}.

Multiplication in Z/5(
√

3) takes the obvious form:

(

a1 + b1

√
3
)

·
(

a2 + b2

√
3
)

= (a1a2 + 3b1b2) + (a1b2 + a2b1)
√

3.

For example:

(

1 + 2
√

3
)

·
(

1 + 4
√

3
)

= (1 · 1 + 3 · 2 · 4) + (1 · 4 + 2 · 1)
√

3 = 25 + 6
√

3 =
√

3.

Note that E contains exactly 25 = 52 elements. We’ll see later that a similar construction
yields a field of cardinality pn for any n ∈ N and any prime p.

The notation E = F(ε) may seem ambiguous, because it suggests the simple extensions
introduced on page 187. However, Proposition 262(b) can be restated:

Corollary 264 Let F ⊂ E and p(x) be as in Proposition 262. If K is any extension of F

containing a root δ of p(x), then there is a natural isomorphism E ∼= F(δ). 2.



Appendix A

Background: Topology

A.1 Introduction

There are several mathematical approaches to studying space and its properties. Each approach
uses a different mathematical structure to represent spatial structure...

Linear Algebra studies the geometry of vector spaces and their subspaces, and is concerned
primarily with ‘flat’ objects like lines and planes.

Differential Geometry uses the tools of differential calculus to study the geometry of curves,
surfaces, and other differentiable manifolds.

Algebraic Geometry uses the algebraic structure of function rings to study the geometry of
curves, surfaces, and other algebraic varieties.

Metric Space Theory studies geometry of a space endowed with a concept of distance (a
‘metric’).

Functional Analysis combines methods of linear algebra and metric spaces to study the
geometry of infinite dimensional vector spaces, such as Banach spaces and Hilbert spaces.

Of all of these, Topology is the most abstract and fundamental. Topology studies those
properties of space which are independent of any particular metric or coordinate structure.
Topology is primarily concerned with four issues:

• Convergence.

• Closure.

• Connectedness.

• Continuity.

221
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Figure A.1: The sequence {p1, p2, p3, . . .} converges to π.

Convergence: Approximation is an ancient and familiar idea. For example, consider the
number π. We can never exactly express π, but for practical purposes it suffices to approximate
π, for example, by:

π ≈ 3.14159265358979323854626400000 . . .

So, consider this sequence of numbers:

p1 = 3.14000000000000000 . . .
p2 = 3.14160000000000000 . . .
p3 = 3.14159300000000000 . . .
p4 = 3.14159265000000000 . . .
p5 = 3.14159265360000000 . . .
p6 = 3.14159265359000000 . . .
p7 = 3.14159265358979000 . . .

...
...

. . .

(Figure A.1) (A.1)

Clearly, this sequence of numbers is getting closer and closer to π. We say that the sequence
{p1, p2, p3, . . .} is converging to π. We can justify this as follows:

• p1 agrees with π up to two decimal places.

• p2 agrees with π up to four decimal places.

• p3 agrees with π up to six decimal places.
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• ....and in general, for any L > 0, there is some N so that pN agrees with π up to L decimal
places. Furthermore, pn also agrees with π up to L decimal places, for any n > N .

Observe that
(

pn agrees with π up to L decimal places
)

⇐⇒
(

|pn − π| <
1

10L

)

.

Thus, we could just say:

For any L > 0, there is some N so that |pN − π| <
1

10L
.

Furthermore, |pn − π| <
1

10L
, for any n > N .

or, more succinctly,

For any L > 0, there is some N so that, for any n ≥ N , |pn − π| <
1

10L
.

Of course, there is nothing special about powers of 10. Instead of talking about 1
10L

, we could
measure convergence using any number ε > 0. We have arrived at the definition of convergence:

For any ε > 0, there is some N so that, for any n ≥ N , |pn − π| < ε.

We say π is the limit of the sequence {p1, p2, p3, . . .}, and write:

lim
n→∞

pn = π.

If we are looking at sequences of real numbers, then the concept of convergence is pretty
straightforward. But in an abstract space X, it is not so transparent. An important question
in topology is, When do sequences in X converge, and what does this mean?

Closure: We say that a subset U ⊂ R is closed if no sequence of elements in U can converge
to a point outside of U.

Example 265:

(a) The open interval U = (0,∞) = {r ∈ R ; 0 < r} is not closed. To see this, consider the
sequence

u1 = 0.1
u2 = 0.01
u3 = 0.001
u4 = 0.0001

...
...

. . .

(A.2)

Clearly, the points u1, u2, u3, . . . are all in (0,∞), but they converge to 0, which is not in
(0,∞). Hence, (0,∞) is not closed.
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(b) The interval U = [0,∞) = {r ∈ R ; 0 ≤ r} is closed. Any sequence of numbers greater
than or equal to zero must converge to a limit greater than or equal to zero. So no
sequence in [0,∞) can converge to a point outside of [0,∞). Hence, [0,∞) is closed.

(c) The interval [0, 1] = {r ∈ R ; 0 ≤ r ≤ 1} is closed.

(d) In general, if −∞ < a < b <∞, then (as the name suggests):

• The closed interval [a, b] = {r ∈ R ; a ≤ r ≤ b} is closed.

• The open interval (a, b) = {r ∈ R ; a < r < b} is not closed. (a and b are the limits
of sequences in (a, b), but a and b are not themselves in (a, b).)

• The left half-open interval (a, b] = {r ∈ R ; a < r ≤ b} is not closed. (a is a limit of
a sequence in (a, b).)

• The right half-open interval [a, b) = {r ∈ R ; a ≤ r < b} is not closed. (b is a limit
of a sequence in (a, b).)

(e) The set Q of rational numbers is not closed. To see this, observe that the sequence (A.1)
above can be rewritten:

p1 =
314

100
; p2 =

31416

10000
; p3 =

3141593

1000000
; . . . . . .

Thus, {p1, p2, p3, . . .} a sequence of rational numbers, but converges to π, which is irra-
tional. Hence Q is not closed.

The closure of a set U in R is the smallest closed subset of R which contains U.

Example 266:

(a) The closure of (0,∞) is [0,∞).

(b) The closure of Q is all of R.

The collection of all closed subsets of R has the following properties:

Lemma 267

(a) The empty set ∅ is closed.

(b) The set R of all real numbers is closed.

(c) If C1 and C2 are two closed sets, then their union C1 ∪C2 is also closed.

(d) If C1,C2,C3, . . . is any collection of closed sets, then the intersection
∞
⋂

n=1

Cn is closed

(even if it is empty —see (a)). 2

It is these four properties which motivate the definition of an abstract topological space (see
Page 226.)
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N=(-oo,  0]
P=(0, oo)

u1u2u3u4

0

R

Figure A.2: The subsets N = (−∞, 0] and P = (0,∞) are disjoint, but there is a sequence in
P converging to a point in N.

x2x1 x3 x4 x5xoo

y2y1 y3 y4 y5 yoo

f f f f f f

Figure A.3: If {x1, x2, x3, . . .} is a sequence converging to x∞, and yn = f(xn) for all n, then
the sequence {y1, y2, y3, . . .} must converge to y = f(x∞).

Connectedness: Imagine ‘cutting’ the real line into two halves: N = (−∞, 0] and P =
(0,∞). Clearly, R = NtP, and the two sets are disjoint. And yet, somehow they seem ‘glued
together’. The reason is that there is a sequence in P converging to a point in N. Specifically,
the sequence {u1, u2, u3, . . .} defined by (A.2) above is a sequence in P which converges to 0, a
point in N.

Because of this, it seems ‘unnatural’ to cut R into N and P. In doing so, we are ‘disrupting’
the topological structure of R, by separating sequences from their limits.

The property we are encountering here is connectedness. We say that the real number line
R is connected because

It is impossible to separate R into two disjoint sets A and B, such that R =
A tB, and so that no sequence in A converges to a point in B or vice versa.

We can express this more succinctly using the concept of closed sets:

It is impossible to separate R into two disjoint closed sets A and B, such that R = A tB.

On the other hand, consider the integers Z. Let N = {. . . ,−3,−2,−1, 0}, and let P =
{1, 2, 3, . . .}. Then Z = N t P, and no sequence in N can converge to a point in P or vice
versa. To see this, note that N and P are separated from one another by the interval (0, 1).
No act of sequence convergence can leap across this chasm. Thus, Z is disconnected.

Continuity A function f : R−→R is continuous if it ‘preserves’ the topological structure of
R. For example:
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(i) If {x1, x2, x3, . . .} is a sequence converging to x∞, and yn = f(xn) for all n, then the sequence
{y1, y2, y3, . . .} must converge to y∞ = f(x∞) (see Figure A.3). In other words,

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)

.

(ii) If U ⊂ R is a connected subset, then f(U) is also connected.

(iii) If U ⊂ R is not closed, then f(U) is not closed either.

Thus, continuous functions are the ‘homomorphisms’ of topological structure.
All three properties are contained within the formal definition of continuity. If f : R−→R

is any function, then f is continuous if, for any subset C ⊂ R,
(

C is closed
)

=⇒
(

f−1(C) is also closed
)

. (A.3)

(Exercise 190 Suppose that the function f satisfies definition (A.3). Show that f satisfies properties
(i), (ii), and (iii).)

A.2 Abstract Topological Spaces

So far we’ve looked at the topology of R. Now we’ll develop a mathematical abstraction of
these properties. A topological space is a set X, along with a collection of subsets C of X
(called closed subsets), satisfying the following Closed Set Axioms:

(C1) The empty set ∅ is in C.

(C2) The set X is in C.

(C3) If subsets C1 and C2 are in C, then their union C1 ∪C2 is also in C.

(C4) If K ⊂ C is any collection of closed sets, then the intersection
⋂

K∈K

K is also in C.

Observe that these properties simply recapitulate the properties of Lemma 267 (where, in
(d), we set K = {C1,C2,C3, . . . ...}).

We extend the concepts of convergence, closure, connectedness, and continuity to this ab-
stract setting:

Closure: If U ⊂ X is any subset of X, then the closure of U (denoted U) is the smallest
closed subset of X containing U. Formally:

U =
⋂

U⊂C⊂X
C∈C

C.

Exercise 191 1. Check that U is closed. (Hint: Use property (d).)

2. Show that, if C is any closed set and U ⊆ C, then U ⊆ C.
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U
X

C1

C2

X

(A) (B)

Figure A.4: U is disconnected if there are two disjoint closed subsets C1 and C2 in X so that
U ⊂ C1 tC2.

Convergence: Let {x1, x2, x3 . . .} be a sequence of points in X, and let x∞ ∈ X be some other
point. We say that the sequence {x1, x2, x3 . . .} converges to x∞ if the closure of the set
{x1, x2, x3 . . .} is exactly the set {x1, x2, x3 . . . , x∞}. Formally:

(

lim
n→∞

xn = x∞
)

⇐⇒
(

{x1, x2, x3 . . .} = {x1, x2, x3 . . . , x∞}
)

.

Connectedness: Let U ⊂ X be any subset (Figure A.4A). We say U is disconnected if
there are two disjoint closed subsets C1 and C2 in X so that U ⊂ C1tC2 (Figure A.4B).
We say U is connected iff it is not disconnected.

Continuity: Let X and Y be topological spaces, and let f : X−→Y. We say that f is

continuous if, for any C ⊂ Y,
(

C is closed in Y
)

=⇒
(

f−1(C) is closed in X
)

.

We say that f is a homeomorphism if:

1. f is continuous.

2. If f is a bijection from X to Y. (Thus, f has an inverse map f−1 : Y−→X).

3. f−1 is also continuous.

We then say that X and Y are homeomorphic.

Continuous maps are the homomorphisms of topological spaces, and homeomorphisms are
the isomorphisms. If X and Y are homeomorphic, then, for topological purposes, they are
identical.

Example 268: Let X =
(−π

2
, π

2

)

, and let Y = R. As shown in Figure A.5, let f : X−→Y be
the tangent function: f(x) = tan(x). Then f is continous and bijective, and f−1 = arctan is
also continuous. (Exercise 192)

Hence, the interval
(−π

2
, π

2

)

is homeomorphic to R.
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−π/2

π/2

tan(x)

−π/2

π/2

arctan(x)

Figure A.5: tan :
(−π

2
, π

2

)

−→R is a homeomorphism, with inverse homeomorphism arctan :
R−→ :

(−π
2
, π

2

)

.

A.3 Open sets

An open set is the complement of a closed set. In other words, if X is a topological space,
and U ⊂ X, then

(

U is open
)

⇐⇒
(

X \U is closed
)

.

Example 269:

(a) The set U = (−∞, 0) is open in R, because R \U = [0,∞) is closed.

(b) The interval U = (0, 1) is open in R, because R \U = (−∞, 0] t [1,∞) is closed.

An equivalent definition of openness is:

(

U is open
)

⇐⇒
(

No point in U is a limit of a sequence in X \U
)

. (Exercise 193)

Note: It is not true that U is open if U is not closed. Most subsets are neither open nor closed.

Example 270:

(a) [0, 1) is neither open nor closed in R.

(b) Q is neither open nor closed in R.

Open subsets satisfy properties which are ‘dual’ to properties (C1) to (C4) of closed sets:

(O1) The empty set ∅ is open.

(O2) The set X is open.
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(O3) If subsets O1 and O2 are open, then their union O1 ∩O2 is also open.

(O4) If O is any collection of closed sets, then the union
⋃

O∈O

O is also open

Exercise 194 Prove (O1) to (O4), by applying de Morgan’s laws to the Closed Set Axioms

(C1) to (C4).

Remark: The complement of every open set is closed, and vice versa. Thus the collection of
all open sets in a space completely determines the collection of all closed sets, and vice versa.
For this reason, we can define a topological space just as easily by specifying which sets are
open, rather than by specifying which sets are closed (as we’ve done above). Indeed, in most
texts, a ‘topological space’ is defined to be a set X and a collection of open sets obeying axioms
(O1) to (O4).

A.4 Compactness

Consider the subsets [0,∞) and [0, 1] in R. Both sets are closed, but there is a difference
between them: [0, 1] is bounded, and this endows it with fundamentally different topological
properties. We say that [0, 1] is compact.

Formally, a subset K ⊂ R is compact if:

1. K is closed.

2. K is bounded (meaning that there is some M > 0 so that |k| < M for all k ∈ K).

Example 271:

(a) If −∞ < a < b <∞, then the closed interval [a, b] is compact.

(b) Any finite union of finite closed intervals is compact. In other words, if −∞ < a1 < b1 <
a2 < b2 < . . . < an < bn <∞, then the set [a1, b1] t [a2, b2] t . . . t [an, bn] is compact.

The concept of compactness generalizes to abstract topological spaces. A topological space
X is compact if it has any of the following three logically equivalent properties:

1. The Finite Subcover Property.

2. The Chinese Box Property.

3. The Cluster Point Property.
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0 1

0 11/2

0 11/3 2/3

0 11/4 1/2

0 1/5 2/5 1

X=(0,1)

O2

O3

O4

O5

Figure A.6: An open cover of (0, 1) which has no finite subcover.

Finite Subcover Property: Let O be a collection of open sets which covers X, in the sense

that
⋃

O∈O

O = X. Then there is a finite subcollection {O1,O2, . . . ,ON} ⊂ O which also covers

X —that is, O1 ∪O2 ∪ . . . ∪ON = X.

This is usually expressed by the slogan, Every open cover has a finite subcover.

Example 272: Let X = (0, 1). For all n ∈ {2, 3, 4, . . .}, let On =
(

1
n
, 2
n

)

, as in Figure A.6.

Let O = {O2,O3,O4, . . .}. Then
⋃

O∈O

O =
∞
⋃

n=2

On = (0, 1).

Hence, O is an open cover of (0, 1). However, no finite subcollection of O covers (0, 1). Thus,
(0, 1) is not compact.

(Weak) Chinese Box Property: Suppose C1 ⊃ C2 ⊃ C3 ⊃ · · · is a descending sequence

of nonempty closed subsets of X, as in Figure A.7. Then
∞
⋂

n=1

Cn is also nonempty.

Example 273:

(a) Let X = [−1, 1], and for all n ∈ N, let Cn =
[−1
n
, 1
n

]

, as in Figure A.8. Let C =
{C1,C2,C3, . . .}. If {Cm1 ,Cm2 , . . . ,Cmk} ⊂ C is any finite subset, then

Cm1 ∩Cm2 ∩ . . . ∩Cmk =

[

−1

M
,

1

M

]

, where M = max{m1,m2, . . . ,mK}.

Thus, all finite intersections are nonempty, and thus, since [0, 1] is compact, we expect

that the infinite intersection
∞
⋂

n=1

Cn is also nonempty. Indeed,
∞
⋂

n=1

Cn = {0}.
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C1 C2 C
3 C

4C
5 C

6
C

7 C
8

C 1
C 1

C 1

C 1 C 1
C1

C1C1

X

Figure A.7: The Chinese Box property.

-1 1

-1 1/2-1/2 C2 1

-1 11/3-1/3

-1 11/4-1/4

C3

C4

X=[-1,1]= C1

Figure A.8: The Chinese Box Property in the unit interval.
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X=R C1

C2

C3

C4

C5

Figure A.9: No Chinese Box Property for the real line.

(b) Let X = R, and for all n ∈ N, let Cn = [n,∞), as in Figure A.9. Let C = {C1,C2,C3, . . .}.
If {Cm1 ,Cm2 , . . . ,Cmk} ⊂ C is any finite subset, then

Cm1 ∩Cm2 ∩ . . . ∩Cmk = [M,∞), where M = max{m1,m2, . . . ,mK}.

Thus, all finite intersections are nonempty. But R is not compact:
∞
⋂

n=1

Cn = ∅.

The ‘weak’ Chinese Box Property is actually equivalent to the

(Strong) Chinese Box Property: Let C be a collection of closed sets. Suppose that, for
any finite subset {C1,C2, . . . ,CN} ⊂ C, the intersection C1∩C2∩ . . .∩CN is nonempty. Then

the full intersection
⋂

C∈C

C is also nonempty.

Lemma 274 Let X be a topological space. Then

(

X has the Weak Chinese Box Property
)

⇐⇒
(

X has the Strong Chinese Box Property
)

.

Proof: ‘⇐=’ Exercise 195 Hint: Let C = {C1 ⊃ C2 ⊃ C3 ⊃ · · ·}.

‘=⇒’ Exercise 196 Hint: Use Zorn’s Lemma. If you don’t know Zorn’s Lemma, forget about it.
2

When we speak of ‘the’ Chinese Box Property, we mean the ‘strong’ one.

Cluster Point Property: Let C ⊂ X be any infinite closed set. Then C contains a cluster
point —that is, a point c ∈ C so that C \ {c} is not closed.

This is usually expressed by the slogan, Every infinite set has a cluster point.

Example 275:



A.4. COMPACTNESS 233

(a) Let X = [0, 1], and let C = {1
2
, 1

3
, 1

4
, 1

5
, . . . , 0}. Then C ⊂ X is a closed subset, and has a

cluster point —namely, 0. If we remove 0, then the set C \ {0} = {1
2
, 1

3
, 1

4
, 1

5
, . . .} is no

longer closed.

(b) Let X = R, and let C = N = {1, 2, 3, 4, . . .}. Then N is a closed subset, but it has no
cluster points, because we can remove any n ∈ N to get the set N \ {n}, which is still
closed. Hence, R is not compact.

Proposition 276 Let X be a topological space. Then the following are equivalent:

(a) X has the Open Cover Property.

(b) X has the Chinese Box Property.

(c) X has the Cluster Point Property.

Proof: (a)⇐⇒ (b) Exercise 197 Hint: use de Morgan’s Laws.

(b) =⇒ (c) Suppose X has the Chinese Box Property, and let D ⊂ X be an infinite,
closed subset. We want to show that D has a cluster point.

Suppose not. Then for every d ∈ D, let Cd = D \ {d}. Since d is not a cluster point of D,
the set Cd is also closed. Let C = {Cd ; d ∈ D}. This is an infinite collection of closed sets.
Furthermore, if {d1, d2, . . . , dn} ⊂ D is any finite subset, then

Cd1 ∩Cd2 ∩ . . . ∩Cdn = D \ {d1, d2, . . . , dn}

is nonempty (because D is infinite).

Thus, the (strong) Chinese Box Property implies that
⋂

d∈D

Cd is also nonempty. But

⋂

d∈D

Cd = D \ {d ; d ∈ D} = D \D = ∅.

Contradiction.

(c) =⇒ (b) Exercise 198 . 2

Further Reading: A very friendly introduction to topology is [5]. An excellent and very
complete text is [10].
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