Mathematics 3790H – Analysis I: Introduction to analysis

TRENT UNIVERSITY, Winter 2012

Solution to Assignment #3

1. Give an example of a sequence a_n which satisfies the condition

For all $\varepsilon > 0$ there is a N such that for all $n \geq N$, $|a_n - a_{n+1}| < \varepsilon$.

but which does *not* converge. [10]

HINT: Compare the given condition to the Cauchy Convergence Criterion for sequences ($\S 2.12$ in the text). They're *almost* the same . . .

Solution. Let $a_n = \sum_{k=1}^n \frac{1}{k} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Then a_n does not converge (this was

done in class, and it is Example 2.12 in the text), but it does satisfy the given condition:

Suppose $\varepsilon > 0$ is given. Choose any integer $N \geq \frac{1}{\varepsilon}$. Then if $n \geq N$, we have

$$|a_n - a_{n+1}| = \left| \left(\sum_{k=1}^n \frac{1}{k} \right) - \left(\sum_{k=1}^{n+1} \frac{1}{k} \right) \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1} < \frac{1}{n} \le \frac{1}{N} \le \varepsilon,$$

as desired. \blacksquare