Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2009

Solutions to Assignment #2

For questions 1 and 2, assume that we know that
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for all x € R.

1. Work out the power series for a”, where a is a positive real number. [3/

SOLUTION. Note that if a > 0, then a = e™(@ . It follows that
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2. Show that et = e®e! by doing algebra with the appropriate power series. [//

SOLUTION. One key to doing this one efficiently is to use the Binomial Theorem. Recall
that if ¢ > 0, then
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It follows that
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Setting n = ¢ — p and k = p in the last, allows us to rewrite this in the form we are going
to need:
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So equipped, off we go, using the distributive laws and the formula we derived above:
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Note that in this last sum, we are summing ‘j:,]’j over all possible combinations of n > 0 and
k > 0. We will list all these combinations a little differently by grouping them according

to what the sum n + k amounts to:
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Whew! R
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3. The modern (and Archimedean!) meaning of “the series > a; converges to A” is
i=0
usually captured by a definition like:

(¥) > a; converges to A if for every € > 0 there is a K such that for all k£ > K we

Archimedes himself would probably have said something more along the following
lines:

(o) > a; converges to A if both
i=0

have < €.

k
(1) for every L < A there is a K such that for all £ > K we have L < (Z ai),
and

k
(2) for every U > A there is a K’ such that for all £ > K’ we have (Z ai> <U.
i=0

Explain, in detail, why these two definitions are actually equivalent. [3]
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SOLUTION. We’ll show that each statement implies the other separately. Suppose ioj a; is
a series and A is a number. i
(=) Assume i a; converges to A in the sense of (%), and suppose L < A and U > A are
given. Let ¢ :zI:nOin(A —L,U—-A).

By (), there is a K such that for all £ > K we have

k
(Z ai) — A‘ < e. It follows

1=0

k k
that for all K > K we have A — (Z ai> <e<A-1L,s0o—> a; < —L, and hence
i=0 i=0

Similarly, by (x), there is a K such that for all £ > K we have

(Sa)-a<e

1=0

k k
follows that for all £ > K’ = K we have (E ai) —A<e<U-A4,50 > a; <U.
i=0 i=0

Since both parts of (e) are satisfied, > a; converges to A in the sense of (e).
i=0

oo

(«<=) Assume ) a; converges to A in the sense of (o), and suppose ¢ > 0 is given. Let
i=0

L=A—candU=A+¢;notethat L < A<U.

k
By part (1) of (e), there is a K such that for all ¥ > K we have L < ) a;, and, by
i=0

k
part (2), there is a K’ such that for all £ > K’ we have ) a; < U. Let N = max (K, K*).
i=0
Then, for all £ > N, we have

k
A—6:L<Zai<U:A+g,
i=0

(35

Thus Y a; converges to A in the sense of (x).
i=0

Hence the two definitions are equivalent. B

which amounts to

<e€E.




