Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2009

Solutions to the quizzes

Quiz #1. Thursday, 24 September, 2009 (10 minutes)

oo
The series 2% =1+ % + i + % + .-+ sums to 2. Denote the kth partial sum of this

n=0
k

series by S = > £ =1+2+2+1 4. 4 L
n=0

1. Show that Sy < 2 for every k > 0. [2/

k
2, How large does k need to be to ensure that the partial sum S, = > 2% of this series

n=0
is within 0.001 of 27 /9]
Hints: First, what, exactly, is 2 — S,? Second, note that 20 = 1024.

SOLUTIONS. The first question is over with very quickly if you remember the formula for
the sum of a finite geometric series. The solution below does it in a brutally simple-minded
way instead.

1. Consider the first fewvaluesof2—5k22—(1+%+%—|—%+-~+2%),
2 8,=2-1=0
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2—-51=2—(14+=-| ==
1 (+2) 5
1 1 1
2—52—2—(14—5—{—1)—1
1 1 1 1
2 — =2—|14+=4+-4+=) ==
Ss3 <—|—2+4+8) g’

and observe that in each case 2 — S, = 2%, which is the last term in Sj. It isn’t too

hard to check that this is true in general. For example,

1 11 1 1 1
Sk+gr=(1+t5+5+g+ to) T o

248 2k ) T 2ok
:(1+1+1+1+...+L)+<i+i>
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1 1 1 1
:(1+§+Z)+Z:(1+§)+§ =141=2



Since 2 — S = 2% > 0 for every k > 0, we must have S; < 2 for every £ > 0. B

. We need to find out for which values of £ we have 2 — S, < 0.001 = WIOO‘ From
our work in question 1, we know that 2 — S}, = 2%, so we are looking for the ks such
that 2% < ﬁ, i.e. such that 2 > 1000. Since 2* is an increasing function of k,
29 = 512 < 1000, and 2'° = 1024 > 1000, it follows that 2 —S;, < 0.001 for all k& > 10,
but not for 0 < k <9.

Thus k needs to be at least 10 to ensure that 2 — S, < 0.001. H



Quiz #2. Thursday, 1 October, 2009 (10 minutes)

o0
You may assume that > 2™ =1+ + 22 + 23 + -+ converges to ﬁ for |z| < 1.
n=0
Find the sum of each of the following series for |z| < 1:

2n+1 5

e -1)"x :133 x x7
L. zo(gn—ﬂzx_?—'_?_T—f—"' [2]

2. S(n+Da"=1+2x+ 32> + 423 +--- [3]
n=0

Hints: Substitution. Calculus.

SOLUTIONS. We will obtain both sums by modifying the given geometric series using sub-
stitution and/or calculus, after a little bit of reverse-engineering on the series in questions
1 and 2.

1. Note that
d o n2n—|—1 d 1‘3 ZES 337
d—E Teawit ] CEEREE LR
d _dx?’ dx5_dx7
dx dx 3 dx 5 dx 7

=1—-a? 4zt —a®+...

This is a geometric series with initial term 1 and common ratio —z2, which therefore
sums to 1_(1_x2) = 1+19:2' It follows that, up to a constant C,

0 (_1>n$2n+1

1
- = J— 2 4_ 6 PR — —
E Sy /(1 P+t -+ ) do /1+x2da: C + arctan(z).

n=0
nn2n—+1
Since arctan(0) = Z = 12)n21 , the constant of integration turns out to be 0,
and so

0 (_1)n£c2n+1
g ~———— = arctan(x) . [
= 2n+l1

2. Note that, up to a constant C,

/(i(n—l—l)l’n) da::/(1+2x+3:1:2+4x3+---) dx

n=0
:/1da:+/2a:da:+/3x2dx+/4x3dx+--~

=C+ao+a*+a°+a* +. -
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We could optimistically assume that C' = 1, making the sum of the last series ﬁ,

and get away with it because C' will disappear in what follows:

oo

d
Z(n+1)x”:%(C’+x—l—x2+x3+x4+---)
n=0

d

:%(1+x+x2+x3+x4+---) (Since £C' =0=21)
d (1
Cdx \1—-2
-1 d
- . 2=
(1 —2x)? dx( 7)
—1
= —. —]_
1
= — |
(1—x)?



Quiz #3. Thursday, 8 October, 2009 (10 minutes)
1. Show that the sequence y, =1+ 1 + % + 1 +---+ L —In(n) is decreasing. [5]
SOLUTION. We will show that y,+1 < y, by considering y,4+1 — Yn:

S I PN S Y I+t -~ In(n)
Yn+1 Yn = 9 3 nt1 n{n 5 n n(n

3
1 1 1 1 1
—In(n+1)+1In(n) = —In (n+ —In (1+—)
n n+1 n

n+1 ) n+1

1 (1 11 2+1 1\° 1/1 4+
o+l n  2\n 3\n 4\ n
RN SR VAR VSN A A
“n+l1 n o 2\n 3\ n 4

_ 1 1+ 1 n 1 N 1 n 1 N 1 n
“\n+1 n  2n2 3n3  4nt 5n°  6nb

Note that all the groupings after the first in this sum are negative, since a larger (absolute)
value for the denominator means a smaller (absolute) value for the fraction. The first
grouping will be non-positive for n > 1 (which are the ns for which the definition of y,
makes sense) because

1 11 2 -2n(n+1)+(n+1)  1-n
n+1 n  2n%2 2n2(n+1) - 2n2(n+1)°

which has a positive denominator and a numerator which is < 0 when n > 1.
It follows that y,4+1 — yn <0, i.e. Ypnt1 < Ypn, whenn > 1. B



Quiz #4. Thursday, 15 Monday, 19 October, 2009 (10 minutes)
Do one of questions 1 and 2.

1. Use Lagrange’s Remainder Theorem to determine the number of terms of the of the
partial sum for the power series expansion of f(x) = In(1 4+ z) that are needed to
guarantee that the partial sum is within 0.1 of In(2) = In(1 4 1). /5]

Hint: You may assume that the power series expansion of f(x) is x — x—; + ”5’3—3 — % +

o EU  and that £O0)(x) = SO forn > 1.

2. Use the Intermediate Value Theorem to show that every real number a« > 0 has a
square root. [5]

Hint: « has a square root if f(x) = 22 takes on the value « ...

SOLUTION TO 1. Recall from class or the text that

1‘2 %3 ZIZ‘4 (_1)nxn
—r— 4+ 4T L R(2),
f@y=e- T+t - L R
) : F ) ntt
where, by Lagrange’s Remainder Theorem, R, (x) = CESN for some ¢ between 0
and x. ta
For In(2) = In(1 4+ 1) we have z = 1, and f("*1(c) = % This lets us estimate

|R,,(1)] using the Lagrange Remainder Theorem with some ¢ such that 0 < ¢ < 1:

f<”+1> wit| _ |01
‘ —\(1+0)n+l-(n+1>!
B 1
- (I+e)nti(n+1)
1 1

< =
(1+0)t(n+1) n+1

We can therefore insure that 1 — - + ﬁ - ﬁ + L SR 1) is within 0.1 of ln( ) =
In(1 + 1) by ensuring that |R,,(1)| < —= < 0.1 == It S pretty obvious that —+ < &
when n + 1 > 10, ¢.e. when n > 9. Taklng 9 or more terms of the power series therefore

ensures that the partial sum is within 0.1 of In(2). W

SOLUTION TO 2. Note that f(x) = x? is continuous for all x and increasing for = > 0.
Suppose « is a positive real number. Choose an integer n such that n? > a. f(z) = 2% is a
continuous function on [0,n] and f(0) = 0% =0 < a < n? = f(n), so, by the Intermediate
Value Theorem, there is a ¢ with 0 < ¢ < n such that ¢ = f(c) = a. Thus c is a square

root of . M



Quiz #5. Thursday, 22 October, 2009 (10 minutes)
1. Suppose f(x) is a function that is defined for all z near 0 and is continuous at 0,

and suppose c is a real number. Use the ¢ — § definition of continuity to show that
g(z) = cf(x) is also continuous at 0. [5/

SOLUTION. First, assume ¢ # 0 and suppose that ¢ > 0. We need to find a § > 0 such
that for all z, if | — 0| < 4, then |g(z) — ¢g(0)| < . Observe that

l9(z) = g(0)] <& <= lef(z) —cf(0)| <e
el [f(z) = f(O)f <e

— |f(x) = F0)] < =

b

]

where the last step requires the assumption that ¢ # 0. Since f(x) is continuous at 0, there
is a 6 > 0 such that for all z, if |z — 0] < 4, then |f(z) — f(0)| < rer- This last, however, is
equivalent to |g(z) — ¢g(0)| < e. It follows that g(z) is continuous if ¢ # 0.

Second, assume ¢ = 0 and suppose that € > 0. Pick any § > 0 you like and suppose
|z — 0] < 6. Then |g(z) —¢g(0)] = [0f(x) —0f(0)] = 0|f(z) — f(0)] =0 < . It follows

that g(z) is also continuous if ¢ = 0. W



Quiz #6. Thursday, 12 November, 2009 (10 minutes)

1. Use the & — § definition of continuity to show that g(z) = 5 is continuous at 1. /5]

SOLUTION. We need to check that for all € > 0 there is a § > 0 such that if |z — 1| < 4,

then |g(z) — g(1)|] < e. Note that g(1) = 35— = 4. Suppose € > 0 is given; we will
attempt to reverse-engineer a d > 0 for this e.
1 1 2—(3z—-1)
—a(1)| = D= 2
3 =3z | =3(z—1)
|6z —2| [6(x—1)+4

If we require that |z — 1| < %, i.e. that § < %, then the denominator of the last expression
is bounded away from 0, 1 = —=34+4 < 6(z —1)+4 < 3+4 = 7. This, in turn, means that

3|z — 1| < —3(x—1) ‘<3|x—1| 31,

7 _‘G(x—l)—i—él 1

Thus, if we set § = min (%, %) and require that |z — 1| < 0, we will have that:

9(0) - 0] = | g2

x_

Hence g(x) is continuous at 1. B



Take-home Quiz #7. Due on Monday, 16 November, 2009

1. Suppose f(x) and g(x) are function that are defined and continuous for all = near a,

and such that g(a) # 0. Use the € — ¢ definition of continuity to show that h(z) = ch Eg

is also continuous at a. [5]

SoLuTIiON. H



Quiz #8. Thursday, 19 November, 2009 (15 minutes)

o0
You may assume that the series Y - —7 converges and that the series Z diverges.
n=1 n=1
Use the Comparison Test to determine whether or not each of the following series converges.

X X sin?(n S n
1. n;%ﬁ [1.5] 2. n;% [1.5] 3. ngong—ﬂ /2]
SOLUTION TO 1. y/n <nforalln > 1,800 < % < \% for all n > 1. Since z diverges,

o0
it follows by the Comparison Test that \/—ﬁ also diverges. l
n=1

SOLUTION TO 2. Foralln > 1,0 < &Z(n) < % because 0 < sinz(n) < 1. Since ) #

n=1

converges, it follows by the Comparison Test that Z sin 5") also converges. B

< % It follows that for all n > 1,

SOLUTION TO 3. For alln > 1, n® < n3 +1, so n3+1 <

0< 525 < 5= n—12 Since Z > converges, it then follows by the Comparison Test that

n
> 7a+7 also converges. W
n=

10



Quiz #9. Thursday, 26 November, 2009 (12 minutes)

1. Use the (limit) ratio test to verify that Z —- converges absolutely. [2/

n= O
o (=1)”
2. Use the convergence test(s) of your choice to determine whether Z In(n) converges
n(n
n=2
absolutely, converges conditionally, or diverges. [3/
SOLUTION TO 1. Here goes:
n+1 +1
n |
lim (n+1)'—1 7T—-lzhm =0<1
n— 00 H n— 00 (n + 1)! T n—oon + 1

It follows by the ratio Test that the series Z — converges absolutely. B

n= O
= (=)™, : : :
SOLUTION TO 2. Z n(n) is obviously an alternating series. (In(n) > 0 for n > 2 and
n(n
n=2
(—1)™ alternates sign, just in case it wasn’t obvious ... ) The absolute values of the terms

of the series is decreasing: since In(n + 1) > In(n) for all n,

(_1)n+1 _ 1 _ 1 _ (_1)n
In(n+1)| In(n+1) " In(n) |In(n)
Moreover, it survives the Divergence Test: Since
im S L g
n—oo | In(n) n—oo In(n)
(=" o (=1)"

because lim In(n) = oo, we have lim

converges
n— oo n— o0 n(n)

= 0 too. It follows that ; In(n)
by the Alternating Series Test.

It remains to determine whether the series converges absolutely or conditionally The
oo

, diverges by comparison with the Z —

In(n)’ =

1 1
which diverges (why?), because 0 < — < ——— since In(n) < n for all n > 2. This means
n

In(n)

that Z 1_ does not converge absolutely, so it must only converge conditionally (since
n

corresponding series of positive terms, E 1

it does_, after all, converge). B

11



Quiz #10. Thursday, 3 December, 2009 (10 minutes )

2nn

n+1

1. Find the interval of convergence of the power series Z

[5]

SOLUTION. First, we find the radius of convergence using the (Limit) Ratio Test.

n+1_n+1
' Uit . 211—#{:2 ) 2n+1 n—+1 n+1 L 2n+1xn+1 n+1
lim = 1i S = lim lim .
n—oo | Qp n— 00 T n—o00 n-4+2 onpn n— o0 2Anpn n+ 2
1 1 144 1+0
= lim 2 200 = 2Jz] lim 2 =20z lim B = 2]
= 2|z|

It follows by the (Limit) Ratio Test that the given series converges absolutely when 2|z| < 1,
i.e. when |z| < 3, and diverges when 2|z| > 1, i.e. when |z| > 1. Hence the radius of
convergence of the series is R = %

It remains to determine what happens at the endpoints of the interval of convergence,

1.e. when z = +R = i%. When we plug in x = %, we get the series

N[ =

v ()t &1 1 1 1
prm— pm— 1 —_ —_— —_— DR
This is just the harmonic series, which we know diverges by the p-Test. On the other hand,
when we plug in z = —%, we get the series

2" (-3)" & (—1)nt! 1 11
=1 - _ ...
Z n+1 z_: n+1 R

This is the negative of the alternating harmonic series, which we know converges by the
Alternating Series Test.

Hence the interval of convergence of the given series is [—%, %) |

12



Quiz #11. Thursday, 11 December, 2009 (10 minutes)
1. Show that the functions f,, () = 142" converge uniformly to f(x) = 1 on the interval
=23 /5]
SOLUTION. We need to show that for any € > 0, there is an N such that for all x € [—%, %],

[fn(z) — f(z)] <e.

Note first that for any = € [—1, 2], we have |z| < 1. It follows that

1

|ﬁ$ﬂ—f@ﬂ=ﬂ+w”—ﬂ=kﬂ%=M”§(%)::—n

Now suppose that € > 0 is given. Choose N such that QLN < €. Then, for any n > N, we

have that 2" > 2V, and so for any z € [—%7 %],
1

o) = F(@)] < g < o <c.

Thus the sequence of functions f,(x) = 1 + z™ converges uniformly to f(x) = 1 on

the interval [—%, %], as desired. W
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