Mathematics 3790H - Analysis I: Introduction to analysis

TRENT UNIVERSITY, Fall 2009

Quizzes

Quiz #1. Thursday, 24 September, 2009 (10 minutes)

The series $\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$ sums to 2. Denote the *k*th partial sum of this series by $S_k = \sum_{n=0}^k \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{2^k}$.

- 1. Show that $S_k < 2$ for every $k \ge 0$. [2]
- 2, How large does k need to be to ensure that the partial sum $S_k = \sum_{n=0}^k \frac{1}{2^n}$ of this series is within 0.001 of 2? [3]

Hints: First, what, exactly, is $2 - S_k$? Second, note that $2^{10} = 1024$.

Quiz #2. Thursday, 1 October, 2009 (10 minutes)

You may assume that $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$ converges to $\frac{1}{1-x}$ for |x| < 1.

Find the sum of each of the following series for |x| < 1:

1.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots [2]$$

2.
$$\sum_{n=0}^{\infty} (n+1)x^n = 1 + 2x + 3x^2 + 4x^3 + \cdots$$
 [3]

Hints: Substitution. Calculus.

Quiz #3. Thursday, 8 October, 2009 (10 minutes)

1. Show that the sequence $y_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln(n)$ is decreasing. [5]

Quiz #4. Thursday, 15 Monday, 19 October, 2009 (10 minutes)

Do *one* of questions 1 and 2.

1. Use Lagrange's Remainder Theorem to determine the number of terms of the of the partial sum for the power series expansion of $f(x) = \ln(1+x)$ that are needed to guarantee that the partial sum is within 0.1 of $\ln(2) = \ln(1+1)$. [5]

Hint: You may assume that the power series expansion of f(x) is $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + \frac{(-1)^n x^n}{n} + \cdots$ and that $f^{(n)}(x) = \frac{(-1)^{n+1} (n-1)!}{(1+x)^n}$ for $n \ge 1$.

2. Use the Intermediate Value Theorem to show that every real number $\alpha>0$ has a square root. [5]

1

Hint: α has a square root if $f(x) = x^2$ takes on the value α ...

Quiz #5. Thursday, 22 October, 2009 (10 minutes)

1. Suppose f(x) is a function that is defined for all x near 0 and is continuous at 0, and suppose c is a real number. Use the $\varepsilon - \delta$ definition of continuity to show that q(x) = cf(x) is also continuous at 0. [5]

Quiz #6. Thursday, 12 November, 2009 $(10 \ minutes)$

1. Use the $\varepsilon - \delta$ definition of continuity to show that $g(x) = \frac{1}{3x-1}$ is continuous at 1. [5]

Take-home Quiz #7. Due on Monday, 16 November, 2009

1. Suppose f(x) and g(x) are functions that are defined and continuous for all x near a, and such that $g(a) \neq 0$. Use the $\varepsilon - \delta$ definition of continuity to show that $h(x) = \frac{f(x)}{g(x)}$ is also continuous at a. [5]

Quiz #8. Thursday, 19 November, 2009 (15 minutes)

You may assume that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges and that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Use the Comparison Test to determine whether or not each of the following series converges.

1.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 [1.5]

1.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 [1.5] 2. $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n^2}$ [1.5] 3. $\sum_{n=0}^{\infty} \frac{n}{n^3+1}$ [2]

3.
$$\sum_{n=0}^{\infty} \frac{n}{n^3+1}$$
 [2]

Quiz #9. Thursday, 26 November, 2009 (12 minutes)

- 1. Use the (limit) ratio test to verify that $\sum_{n=0}^{\infty} \frac{\pi^n}{n!}$ converges absolutely. [2]
- 2. Use the convergence test(s) of your choice to determine whether $\sum_{n=0}^{\infty} \frac{(-1)^n}{\ln(n)}$ converges absolutely, converges conditionally, or diverges. [3]

Quiz #10. Thursday, 3 December, 2009 $(10 \ minutes)$

1. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^n x^n}{n+1}$. [5]

Quiz #11. Thursday, 11 December, 2009 (10 minutes)

1. Show that the functions $f_n(x) = 1 + x^n$ converge uniformly to f(x) = 1 on the interval $\left|-\frac{1}{2},\frac{1}{2}\right|$. [5]

2