Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Fall 2008

Quizzes

Quiz #1. Wednesday, 17 September, 2008. [10 minutes]

- 1. Find the sum of the series $\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = 1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \cdots$ [2]
- 2. Verify that the geometric series $\sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}}$ and $\sum_{n=0}^{\infty} (x-1)^n$ are equal for any x for which they both converge. [3]

Quiz #2. Wednesday, 24 September, 2008. [10 minutes]

1. Use Newton's binomial series formula to find an infinite series which sums to $\frac{1}{\sqrt{2}}$. [5]

Quiz #3. Wednesday, 1 October, 2008. [10 minutes]

You may assume that $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$ is the Taylor series of $f(x) = \frac{1}{1-x}$ at 0, and let $R_{n,0}(x) = D_n(0,x) = f(x) - 1 - x - x^2 - \dots - x^n$ denote the *n*th remainder at 0.

- 1. Find $f^{(4)}(0)$. [2]
- 2. What does the Langrange Remainder Theorem tell you about $R_{4,0}(x)$? [3]

Quiz #4. Wednesday, 8 October, 2008. [10 minutes]

1. Use the $\varepsilon - \delta$ definition of limits to verify that $\lim_{x \to 0} x \cos(x) = 0$. [5]

Quiz #5. Wednesday, 29 October, 2008. (Open book!) [10 minutes]

1. Give an example to show that the following converse to the Mean Value Theorem is not true. [5]

Suppose a function f(x) is defined and differentiable for all x. Then, for every x = c, there are a and b with a < c < b such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Explain (informally!) why your example does the job. [5]

Quiz #6. Wednesday, 29 October, 2008. (Open book!) [10 minutes]

Give an example of each of the following:

- 1. A function which is defined for all x and is strictly decreasing but does not satisfy the intermediate value theorem. [1]
- 2. A function which defined for all x and satisfies the intermediate value property, but is not differentiable for all x. [2]
- 3. A function which is defined for all x in [-1,1] and is continuous except at x = 0, satisfies the intermediate value property on [-1,1], but is unbounded on [-1,1]. [2]

Explain (informally!) why your examples do the job.

- Quiz #7. Wednesday, 5 November, 2008. [10 minutes] Let $f(x) = 1 + x^2 + x^4$.
 - 1. What is the Taylor series of f(x) at a = -1? [2.5]
 - 2. What is the Cauchy form of the remainder $R_{3,-1}(x) = f(x) T_{3,-1}(x)$? [2.5] Note: Recall that $T_{n,a}(x)$ is the polynomial in x - a consisting of the terms of degree $\leq n$ of the Taylor series of f(x) at a.
- Bonus. Find an explicit value for the $c \in (-1, 0)$ that appears in the Cauchy form of the remainder $R_{3,-1}(0)$. [1]

Quiz #8. Wednesday, 12 November, 2008. [15 minutes]

- 1. Show that $\sum_{n=1}^{\infty} \frac{1}{n^{3+(-1)^n}} = \frac{1}{1^2} + \frac{1}{2^4} + \frac{1}{3^2} + \frac{1}{4^4} + \frac{1}{5^2} + \frac{1}{6^4} + \cdots$ converges. [2]
- 2. Suppose that $\sum_{n=0}^{\infty} a_n$ converges absolutely, B > 0, and that $|b_n| \le B$ for each $n \ge 0$. Show that $\sum_{n=0}^{\infty} a_n b_n$ converges absolutely. [3]
- Quiz #9. Wednesday, 19 November, 2008. [5 minutes]
 - 1. Use the Ratio Test to show that $\sum_{n=0}^{\infty} \frac{c^n}{n!}$ converges for any $c \in \mathbb{R}$. [5]
- Quiz #10. Wednesday, 26 November, 2008. (Open book!) [7 minutes]
 - 1. Determine whether the series $\sum_{n=0}^{\infty} \frac{(2k)!}{4^k \cdot k! \cdot k!}$ converges absolutely, converges conditionally, or diverges. [5]
- Quiz #11. Wednesday, 3 December, 2008. [10 minutes]
- 1. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^3}$. [5]