
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2008

Assignment #1 – Series business?
Due: Wednesday, 24 September, 2008

Your task will be to show that
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. The questions

below lay out a step-by-step approach to doing this.

1. Verify the following trigonometric identity. (So long as x is not an integer multiple of
π anyway!) [1.5]
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Hint: Use common trig identities and the fact that for any t, cos(t) = sin

(
t+ π

2

)
.

2. Verify the following trigonometric summation formula for m ≥ 1. [1.5]
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)
Hint: Apply the identity from question 1 repeatedly, starting from 1 = 1

sin2(π2 ) . After

doing so, you may find the fact that sin(t) = sin(π − t) comes in handy.

3. Verify the following limit formula, where k ≥ 0 is fixed. [2]

lim
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)
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Hint: This is really just a version of limt→0
sin(t)
t = 1, which limit you may remember

from MATH 110 . . .

4. Take the limit as m→∞ of the identity in 2, and use 3 to show the following. [2]
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5. Use 4 and some algebra to check that
∞∑
n=1

1
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is true. [1.5]
Hint: Split up

∑∞
n=1

1
n2 into the sums of the terms for even and odd n respectively and

try to rewrite the sum of the terms for even n.

6. A major assumption needs to be made in one of the steps outlined above. What is it?
How can it be justified? [1.5]


