Using R in MATH 356H
If you have taken MATH 256H at Trent recently, you are familiar with R. In case you have not, the first pages of this document teach you the basics. The second part refers to those aspects of R that are useful for MATH 356H. Different sections will become relevant as the semester progresses.
PART I: Fundamentals

What is R?

     R is statistical software freely available on the web. R is installed in the Trent network, but you might want to download it for your personal computer. You can find Windows, Mac and Unix versions at http://www.r-project.org/ . In that site you will also find instructions, manuals and lots of information that may be useful. In particular, if you look under the contributed documentation, you will find links to many sites with excellent notes and tutorials.
Starting R
R is most easily used in an interactive manner. You ask it a question and R gives you an answer. Questions are asked and answered on the command line. To start up R's command line, double click on the R icon (or type R in the command line in Unix).  Once R is started, you will be greeted by a long statement that ends in a >. This is a prompt, inviting you to start typing your commands. 
Your own workspace

Every time R is started, it loads up the previously saved workspace, that is, any named objects that were stored in memory (the default is .RData from the starting directory), and when your session ends, it will ask whether or not you want to save your workspace.  It is advisable that work from different projects and different people be saved in different directories. Hence, the first thing to do when you start is change the working directory to your working directory. You can do this by going to the File menu, choosing “Change dir...” and typing the path to the desired directory.  Note that the directory must already exist in order to switch to it!

In order to remove the workspace that has already been loaded from the starting directory, use the command


> rm(list=ls())

and you can check that the workspace is indeed empty by using


> ls()

Note: the instruction rm removes whatever is between the brackets, so if you want to remove a single object, say the variable x, then you would write 


>rm(x)

Finally, if you have worked in that directory before and wish to load your own previously stored workspace, then go to the File menu and choose “Load workspace.”
A few things to keep in mind…
1.   R is case sensitive, but insensitive to white space.

2    Use the up arrow key to repeat previous commands and edit them. 

3.  When a command does not fit in one line, a + appears as a continuation prompt. If after pressing Enter, +  is displayed, it means that your command is not complete (so that if you were not expecting it, it is a sign of a mistake in your command). 
Help

R has a very useful inbuilt help system. To get more information on any specific named function, simply type help and the name of the function in parenthesis. For example, to find out more about sd (representing standard deviation), the command is 


> help(sd)


#You can also type ?sd with the same purpose.
R as calculator
The simplest thing R can do is work as a calculator. For example, to add 1+1, you would type 1+1 and press Enter, and what you would see on the screen would be 
> 1+1

[1] 2
>
The > means that R is ready for another command; the [1] means that this is the first answer that was requested (in this case the only one); and the 2 corresponds to the answer.  R has many built in functions that can be used for calculating expressions, and we will learn many of them as we go along. Here are a few examples:

> 2 + 3 * 4 
# Keeps the usual operator precedence 
[1] 14

> 3 ^ 2 

# Exponentiation, same as 3**2
[1] 9

> exp(1)          # Basic mathematical functions are available

[1] 2.718282

> sqrt(10)

[1] 3.162278
> log(2)

# natural log
[1] 0.6931472

> log10(2)

# base 10 log
[1] 0.30103

> pi 


# The constant pi is predefined

[1] 3.141593

Note that the symbol # above is for inserting comments, so that everything coming after # is ignored by R.

All the commands above were simple expressions, so they were evaluated and printed on the screen, and their value was lost for later use. In order to save the answer for later use, you must use an assignment.  When a command is an assignment, the command is evaluated and saved in the workspace, but not automatically printed. You just need to type the name of the assigned variable to print its content on the screen. For example, if we wish to remember this sum for later, we can assign it to the variable add, and then ask for its value

> add <- 1+1


> add


[1] 2
Note:

1. Remember that R is case sensitive, so that a and A will be seen as two different variables. 
2. Variable names can use letters, digits and a period (most recent versions also allow an underscore).
3.  Assignments can also be done with the equal symbol:

> add = 1+1
Data


R has several types of variables. Some of them are:
	type
	Range
	defined by

	numeric
	Numbers
	x <- 2.5

	character
	text strings
	x <-"text"

	logical
	TRUE or FALSE
(can write T or F)
	X <-TRUE
x = T


 
Variables do not need to be initialized before they are used; their type is automatically determined the moment they are defined by the <- or = assignments. These types can be combined into more complicated data structures, such as vectors, matrices (vectors and matrices are both arrays), lists and data frames. 


Numerical vectors are ordered collections of numerical values. We can create a vector, say x, consisting of the numbers 5,4,6,9 and 3 by assigning these numbers to the vector x with the c command. The instruction would be
> x = c(5,4,6,9,3,2)
(x<-c(5,5,6,9,3) can also be used.)  The c in the instruction stands for “concatenate,” so that you are asking R to concatenate those values together in a vector. Vectors can also be formed by concatenating character values or logical ones:


> y = c("you", "me", "my dog") 

> y


[1] "you"    "me"     "my dog"


> w = c(T,F,T,T,F)

Keep in mind that vectors only concatenate values of the same type.

The components of a vector are always numbered and may be referred to as such.  For example, the components of our vector x can be referred to as x[1], x[2], x[3], x[4], x[5] and x[6] and using this type of references for our vectors above we would get
> x[1]

[1] 3

> y[2]

[1] "me"

> w[3]

[1] TRUE

Note that the first element of the vector is numbered 1. We can also refer to parts of the vector, as in 

> x[2:4]
#components 2 through 4


[1] 4 6 9


> x[-1]

#excludes the first element


[1] 4 6 9 3 2


> x[-1:-3]
#excludes the first through the third elements


[1] 9 3 2


> x[-(1:3)]    #same as above


[1] 9 3 2


There are some instructions that can be used as shortcuts for particular kinds of vectors.  For example:


> vec1 = rep(3,5)   #will repeat the 3 value 5 times


> vec1


[1] 3 3 3 3 3


> vec2 = seq(3,7)  #will start at 3 and end at 7; same as 3:7

> vec2


[1] 3 4 5 6 7


> vec3 = seq(3,11,by=2) #will start at 3,increment by 2 up to 11 


> vec3


[1] 3 5 7 9 11

Another useful instruction for creating vectors is scan, which will read data from a file. When the filename is empty, it will read data from the keyboard. You simply type in the data separated by spaces or by returns, and the command will stop reading data when you type in a blank row. For example, we could create a vector x2 by writing

> x2 = scan ()

> 1: 5 4 6 9
> 5: 3 2

> 7:


Read 6 items


This vector is identical to x above, and we can check that that is indeed the case by writing

> all.equal(x,x2)


TRUE


When bigger data sets are required, scanning from a file instead of from the keyboard is much more efficient. For example, if the data file binge.dat is in our working directory, we can import it to create the vector binge by scanning our file. The instruction is: 

> binge=scan(file="binge.dat")

Read 140 items
Note: the file could have been created elsewhere, not necessarily in the working directory. If that is the case, then the scan instruction must give the complete pathname.

Files created by other statistical packages (such as Excel) can also be imported. For example, if the file ovens.csv (a comma separated file) is in the working directory, we can read it using the read.table instruction:

> ovens = read.table(“ovens.csv”, header = TRUE, sep=”,”) 
Here header = TRUE indicates that the entries in the first line of the file should be interpreted as variable names, and columns are separated by commas (sep=”,”). Note: the default separator is the empty space (or tab or carriage return), which is written as sep=””. 

Objects previously stored  by R can also be made available for computations. This is especially useful when using data sets available through the R packages (such as “datasets” and “HSAUR”). For example, we can import the data object Puromycin (reaction velocities of an enzymatic reaction) from the package datasets (if the package is not available, it can be loaded and installed from the “Packages” menu):

> data(“Puromycin”,package=”datasets”)
We can look at a description of the structure of this object by using


> str(Puromycin)


`data.frame':   23 obs. of  3 variables:

 
$conc : num  0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56…

$rate : num  76 47 97 107 123 139 159 152 191 201 ...

 
$state: Factor w/2 levels "treated","untreated": 1 1 1 1 1 1 1… 

 - attr(*, "reference")= chr "A1.3, p. 269"

We can see that Puromycin is an object of class data.frame, the most important structure for handling tabular statistical data in R. There are 23 observations, each with 3 variables: two numerical and one categorical (factor with two levels). Since Puromycin is a long and difficult name, we may want to store the same data in a different variable, say 


> enz = Puromycin
Matrices

R allows you to arrange your data into a 2-dimensional array (a matrix) or indeed an array with any number of dimensions. An array in R is a vector with a set of dimensions attached. We can make a copy of our vector x and convert it into an array, like this: 


> x.matrix = x  #this makes a copy; still looks like a vector

> dim(x.matrix) = c(2,3)  #now it is given the correct dimensions

> x.matrix

     

[,1] [,2]  [,3]


[1,]    5  
4     6

[2,]    9  
3     2
and we can refer to parts of it like this: 


> x.matrix[1,2]


[1] 4

> x.matrix[1,]


[1] 5 4 6

> x.matrix[,2]


[1] 4 3


> x.matrix[1,2:3]


[1] 4 6
Here an omitted index is used to represent an entire column or row of the array and two integers and a colon are used to select part of a row or column.  

2-dimensional arrays are identified as matrices, and have their own (more intuitive) commands.  The following instruction creates the same matrix as above, but now we call it x3:
> x3 = matrix(c(5,4,6,9,3,2),nrow=2)

> x3
     
       [,1] [,2] [,3]

[1,]    5    6    3

[2,]    4    9    2

R has built in functions for the manipulation of matrices (e.g., multiplication, transpose or inverse).
Arithmetic with vectors and arrays

One important feature of R is that it will perform arithmetic operations on complete vectors or arrays, without having to create a loop. Hence, when the function is applied to a vector, every element of the vector is affected by the function. For example,

> x+2      # Will add 2 to every element of x


[1] 7 6 8 11 5 7

> x^2  
# Will square every element of x

[1] 25 16 36 81 9 4


> log(x.matrix) #Will take the log of all elements of the matrix

        [,1]     [,2]      [,3]


[1,] 1.609438 1.791759 1.0986123


[2,] 1.386294 2.197225 0.6931472

Descriptive measurements 

Let us use the data from Exercise 1.71 (page 49), and obtain all the measures of location and variability discussed in sections 1.3 and 1.4 of the textbook for quantitative variables:
> ex1.71 = scan()



#enter data

1: .95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

11: .78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

21: 

Read 20 items

> mean(ex1.71)




#mean

[1] 0.9255

> median(ex1.71)



#median

[1] 0.93

> max(ex1.71)




#maximum

[1] 1.06

> min(ex1.71)




#minimum

[1] 0.78

> (max(ex1.71) - min(ex1.71))/2


#midrange

[1] 0.14

> var(ex1.71)




#variance

[1] 0.006552368

> sd(ex1.71)




#standard deviation

[1] 0.0809467

> fivenum(ex1.71)



#5 number summary for boxplots

[1] 0.780 0.855 0.930 0.960 1.060

> summary(ex1.71)
#5 number summary using exact 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.   #percentiles

 0.7800  0.8575  0.9300  0.9255  0.9600  1.0600 

> quantile(ex1.71, c(.25,.75)) 

#25th and 75th percentiles

   25%    75% 

0.8575 0.9600 

> mean(ex1.71, trim=1/10)
#trimmed mean with 1/10 of observations #removed on each end

[1] 0.925

> IQR(ex1.71)



#inter-quartile range(from percentiles)

[1] 0.1025

Note that the mode function in R gives back the storage mode of an object, not the statistical mode of a set of data. 
Statistical functions can be applied to parts of vectors, or to different parts of other objects. For example:

>mean(enz[,”conc”])

[1] 0.3121739

will evaluate the mean for all observations of the variable conc in the data.frame enz. We can take the mean of only a few observations, say the first five:


> mean(enz[1:5,"conc"])


[1] 0.054

If you try to evaluate the mean of the complete data.frame, R will evaluate the mean whenever possible, and will give a warning message for those variables that are not numeric:

> mean(enz)

       conc        rate       state 

  
0.3121739 126.8260870          NA 

Warning message:

argument is not numeric or logical: returning NA in:

mean.default(X[[3]], ...)

Summary statistics can also be applied by groups with the function tapply. This function will create a table with the required data. For example, in

> tapply(ovens[,"Temp.1600"],ovens[,"Oven"],mean)

  
Oven 12    Oven 4    Oven 8 


10.800000  3.066667  7.166667 

the function takes the first variable, splits it according to the second one, and computes the mean for each group.
For categorical variables, only frequencies (and therefore mode) can be obtained:

> table(enz[,”state”])


treated untreated 

       12        11

Quitting and saving work

There are many ways to quit R: with the command q(), closing the window directly, or choosing Exit from the File menu. In each case, there will be a message asking whether the workspace image should be saved.  If you click Yes, all objects from the work session (and everything that was there before) will be saved (the default is .Rdata in the working directory). If there are objects (variables, data frames, functions, etc.) that you do not want to keep, they should be removed before quitting. For example, to remove the variable add that we created above, we would type 


> rm(add)

PART II: Using R for Linear Statistical Models

Chapter 12: Simple linear regression and correlation

Scatterplots.
The first step in simple linear regression is to make a scatterplot of the two variables involved. This can be done easily with the command plot(x,y), and the regression line can be drawn on the scatterplot with the command abline(lm(y~x)). The picture in Figure 12.8 (page 501) is drawn with


> plot(ex12.4x,ex12.4y); abline(lm(ex12.4y~ex12.4x))

There are many optional arguments for customizing your plots, including labels and colours.  Check out ?par for all the parameters that can be modified in graphics.

Printing and saving graphs 
Although your graph is showing on the screen, you might want to save it so as to look at it later or include it in your homework. If using Windows, an easy way of doing this is right clicking on the picture and copying the graph in whatever form you might want. You can save it in a file, or copy and paste it directly in a document.  

For saving postscript files from the command line, you can use:


> dev.copy2eps(file="mypict.eps")

The resulting file mypict.eps can be printed, viewed on screen or included in a document. 
Arranging multiple plots


There are several ways to display multiple plots in a single page. Here we will just discuss the simplest one: by using the mfrow or mfcol graphics state settings. Both of these consist of two values, the first one indicating the number of rows and the second one the number of columns. The graphing area will then  be divided into regions of equal size according to those numbers. The top-left region is used first. If mfrow  is used for the setting, then the regions are filled by rows, whereas the regions are filled by columns if mfcol was used. For example,


>par(mfrow=c(3,1))

will allow us to write three graphs on the same page, one on top of the other.
The linear model

The coefficients of the linear regression model are obtained with lm(y~x). This instruction creates a linear model (lm) associating y with x (that is what the ~ is for). (Note: if it is known that the model has 0 intercept (remember that (0,0) must thus be in the scope of the model), then we can write lm(y~x-1) for such a model. ) The regression model for the data above (Example 12.4) is


> lm(ex12.4y~ex12.4x)


Call:  lm(formula = ex12.4y ~ ex12.4x)


Coefficients: (Intercept)      ex12.4x  

   
    

   118.9099      -0.9047  

so that the estimated model has 
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. We can also obtain the complete regression table with the command summary. First we keep the calculations for the linear model in an object and then we summarize that object:

> model=lm(ex12.4y~ex12.4x)


> summary(model)


Call: lm(formula = ex12.4y ~ ex12.4x)


Residuals:


    Min      1Q  Median      3Q     Max 


-1.7754 -0.5727 -0.1325  0.6034  1.6818 


Coefficients:


             Estimate Std. Error t value Pr(>|t|)    


(Intercept) 118.90992    4.49912   26.43 1.10e-12 ***


ex12.4x      -0.90473    0.04109  -22.02 1.12e-11 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 


Residual standard error: 0.938 on 13 degrees of freedom


Multiple R-Squared: 0.9739,     Adjusted R-squared: 0.9719 


F-statistic: 484.8 on 1 and 13 DF,  p-value: 1.125e-11

The overall test of significance is rejected, so the slope is significantly different than zero.  Both coefficients have small P-values, so they are both significant.

Confidence and prediction intervals.

The instruction for confidence and prediction intervals is predict, which can do many things depending on its arguments. All of the calculations below refer to the data in Example 12.12 (page 522).

For a 95% confidence interval at the particular value x=45:


> predict(model,data.frame(ex12.12x=45),interval="confidence")

        
  fit      lwr      upr


[1,] 13.79268 12.18525 15.40011
Note that if no data.frame is specified, then confidence intervals at all levels of observed x values will be created:


> predict(model,interval="confidence")


fit       lwr      upr

1  24.802446 21.924677 27.68022

2  22.719518 20.352145 25.08689

3  22.273176 20.008694 24.53766

4  21.231712 19.194769 23.26865

5  21.231712 19.194769 23.26865

6  19.000002 17.362911 20.63709

7  18.256099 16.713130 19.79907

8  18.256099 16.713130 19.79907
9  16.768293 15.330346 18.20624

10 15.875609 14.439428 17.31179

11 15.280487 13.819192 16.74178

12 13.792681 12.185254 15.40011

13 12.304875 10.457440 14.15231

14 12.304875 10.457440 14.15231

15 10.817069  8.666962 12.96718

16 10.817069  8.666962 12.96718

17  9.626824  7.205036 12.04861

18  7.841456  4.980495 10.70242

For a 95% prediction interval at the same value of x=45,


> predict(model,data.frame(ex12.12x=45),interval="prediction")

        
  fit      lwr      upr


[1,] 13.79268 7.512036 20.07333
The complete scatterplot with confidence and prediction bands (as in Figure 12.16 of page 522) is obtained through
> plot(ex12.12x,ex12.12y)

> abline(model)
> points(sort(ex12.12x),predict(model,interval="confidence")[,2],type="l")
> points(sort(ex12.12x),predict(model,interval="confidence")[,3],type="l")

> points(sort(ex12.12x),predict(model,interval="prediction")[,2],type=”l”)

> points(sort(ex12.12x),predict(model,interval="prediction")[,3],type="l")

Correlation

Inferences regarding correlation can be done using the cor.test command.  We need to specify the method of calculating correlation (Devore uses the Pearson correlation coefficient), and change the defaults if we want a one-tailed test. For the data in Example 12.15:

> cor.test(ex12.15x,ex12.15y, method="pearson")

        Pearson's product-moment correlation

data:  ex12.15x and ex12.15y 

t = 3.8325, df = 14, p-value = 0.001830

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval:

 0.3406608 0.8941061 

sample estimates:      cor   0.7155355

Chapter 13: Nonlinear and Multiple regression
Model validation

Model validation through the examination of residuals can be done easily with R, since the residuals are obtained whenever a linear model is fit.  All we have to do is call them with the 
resid instruction. For Example 13.1:

> model = lm(ex13.1y ~ ex13.1x)

> resid(model)

         1          2          3          4          5          6          7 

 24.408673 -28.377135  11.622865  -1.162943 -21.162943  23.265440 -16.734560 

         8          9         10         11         12         13         14 

 17.693824  47.693824 -27.877792 -77.877792  46.550591 -29.021025  30.978975

Diagnostic plots:

By asking R  to plot the results of the regression model, it will plot 4 graphs: residuals vs. fitted values, normal probability plot of residuals, fitted values vs. square root of standardized residuals (called scale location – to check for possible outliers) and residuals vs. leverage (involves Cook’s distance, which is not covered by Devore, but is used to check for  the presence of points that are very influential in the linear model). For that same example:


> par(mfrow=c(2,2))


> plot(model)
The plot of observed vs. fitted can easily be done with 


> plot(ex13.1y, predict(model))

Transformed variables

Transformations of vectors are done very easily (see artihmetic with vectors and arrays above) and so regression with transformed variables is done just as simple linear regression once the variables have been transformed.
Multiple regression
It is very easy to remember how to do regression with more variables. Since for multiple regression we wish to add more variables, then these must be added in the argument of the lm instruction. In particular, for polynomial regression, you simply have to add the powers that you want to include in the polynomial.

Let us consider Example 13.12 just using x1 and x2

> model=lm(ex13.12y~ex13.12x1+ex13.12x2)


> model


Call: lm(formula = ex13.12y ~ ex13.12x1 + ex13.12x2)


Coefficients:


(Intercept)    ex13.12x1    ex13.12x2  


    84.8167       0.1643     -79.6667  

and including the interaction variable:


> model=lm(ex13.12y~ex13.12x1+ex13.12x2+ex13.12x1*ex13.12x2)


> model

Call:


lm(formula = ex13.12y ~ ex13.12x1 + ex13.12x2 + ex13.12x1 * ex13.12x2)


Coefficients:


Intercept)        ex13.12x1            ex13.12x2  ex13.12x1:ex13.12x2  


   6.217            5.779               51.333        -9.357  

As before, the complete regression table is obtained with the command summary.  For the model with interactions, we get


> summary(model)

Call: lm(formula = ex13.12y ~ ex13.12x1 + ex13.12x2 + ex13.12x1 * ex13.12x2)

Residuals:

      1       2       3       4       5       6       7       8       9 

 0.3417 -0.1750 -2.4583 -2.9750 -0.7167  2.0833  0.2000  0.7167  2.9833 

Coefficients:

                    Estimate Std. Error t value Pr(>|t|)  

(Intercept)            6.217     30.304   0.205   0.8455  

ex13.12x1              5.779      2.079   2.779   0.0389 *

ex13.12x2             51.333     50.434   1.018   0.3555  

ex13.12x1:ex13.12x2   -9.357      3.461  -2.704   0.0426 *

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 2.423 on 5 degrees of freedom

Multiple R-Squared: 0.8946,     Adjusted R-squared: 0.8314 

F-statistic: 14.15 on 3 and 5 DF, p-value: 0.00706 
so that the test for model validity is significant, as well as two of the coefficients. 
Variable selection

R does not have built in commands for doing stepwise regression (forwards or backwards) for the purpose of variable selection. However, either of the procedures can be easily implemented in an interactive manner. The command that allows us to change the model one variable at a time is update. Let us work with the energy bar price model that we did in class (data not in the textbook). The response is price, and possible predictors are calories, fat content and protein content.  We first run the model with all three variables, to obtain:

> model=lm(price~protein+fat+calories)

> summary(model)

Call: lm(formula = price ~ protein + fat + calories)

Residuals:

     Min       1Q   Median       3Q      Max 

-0.36796 -0.18654  0.05917  0.16403  0.34542 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) 0.327322   0.299073   1.094  0.29223   

protein     0.040300   0.011836   3.405  0.00427 **

fat         0.063083   0.031605   1.996  0.06577 . 

calories    0.001083   0.001458   0.743  0.46987   

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.2356 on 14 degrees of freedom

Multiple R-Squared: 0.7936,     Adjusted R-squared: 0.7493 

F-statistic: 17.94 on 3 and 14 DF,  p-value: 4.543e-05
Since calories has the smallest t value less than tout=2, we run the model again without calories. We do not have to run a completely new model; we can simply update the model by removing the variable:

> model=update(model,.~.-calories)

> summary(model)

Call:  lm(formula = price ~ protein + fat)

Residuals:

     Min       1Q   Median       3Q      Max 

-0.37571 -0.17176  0.04456  0.14475  0.33542 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.51920    0.14847   3.497 0.003244 ** 

protein      0.04380    0.01069   4.097 0.000952 ***

fat          0.06451    0.03107   2.076 0.055479 .  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.232 on 15 degrees of freedom

Multiple R-Squared: 0.7854,     Adjusted R-squared: 0.7568 

F-statistic: 27.45 on 2 and 15 DF,  p-value: 9.698e-06 

The t ratio of all variables is now greater than 2, so we could stop here. The ratio for fat is just slightly over 2 (and it not significant at .05) so we could also consider removing it by updating the model again, but we will stop here for now. 

Chapter 10: The Analysis of Variance

Single-factor ANOVA

The instructions for ANOVA are simple (the command is anova, combined with the lm function, so that the ANOVA used comes from a linear model assumption). The main thing is the storing of data so that the instruction can find what it is looking for.  Let us analyse Example 10.1 (page 404).  The data have to be stored in an object called a data.frame. Within that data frame, many variables can be stored, some as responses and some as factors. For that example, we need to create 2 vectors: one of responses and one where the factor level of type of box is stored. We can do that as follows:

> ex10.1=data.frame(cs=c(655.5,788.3,734.3,721.4,679.1,699.4,789.2,772.5,786.9,

+ 686.1,732.1,774.8,737.1,639,696.3,671.7,717.2,727.1,

+ 535.1,628.7,542.4,559.0,586.9,520.0),boxtype=factor(rep(1:4,c(6,6,6,6)))) 

We are storing all the data in the data frame ex10.1. The vector cs (for compression strength) is the vector of all responses, so that we concatenate all the observations in the same vector. Next we define the box type for each observation. What we have asked R to do is make a factor vector by repeating the numbers 1 to 4 six times each (given that we have 6 observations per factor level). If we had had different sample sizes in each factor level, then the repetitions would have not been all 6 but equal to the number of observations per factor.

We can start by obtaining the boxplots in Figure 10.1, with the plot command:

> plot(cs~boxtype,data=ex10.1, horizontal=T) 

The last instruction is a Boolean variable that assures that the boxplots are horizontal, since the default is that they are vertical. The plot suggests a significant difference between factor level means, which we can verify through the ANOVA table for these data:

> anova(lm(cs~boxtype,data=ex10.1))
Analysis of Variance Table

Response: cs

          Df Sum Sq Mean Sq F value    Pr(>F)    

boxtype    3 127375   42458  25.094 5.525e-07 ***

Residuals 20  33839    1692                      

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The significance code lets us know that the P-value is significant for all common significance levels, so we reject the hypothesis of equality of means.

Multiple comparisons

Tukey multiple comparisons can be done with the command TukeyHSD. Let us apply Tukey’s procedure to the data in Example 10.5. First we see boxplots and obtain the ANOVA table:

> plot(REM~ethanol,ex10.5)

> anova(lm(REM~ethanol,data=ex10.5))

Analysis of Variance Table
Response: REM

          Df Sum Sq Mean Sq F value    Pr(>F)    

ethanol    3 5882.4  1960.8  21.092 8.325e-06 ***

Residuals 16 1487.4    93.0                      

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The P-value is significant at all common levels, so we reject the hypothesis of equality of means. Hence it is worthwhile to apply Tukey’s comparisons:

> TukeyHSD(aov(REM~ethanol,data=ex10.5))

  Tukey multiple comparisons of means

    95% family-wise confidence level

Fit: aov(formula = REM ~ ethanol, data = ex10.5)

$ethanol

      diff       lwr         upr     p adj

1-0 -17.74 -35.18636  -0.2936428 0.0455781

2-0 -31.36 -48.80636 -13.9136428 0.0005142

4-0 -46.52 -63.96636 -29.0736428 0.0000056

2-1 -13.62 -31.06636   3.8263572 0.1563545

4-1 -28.78 -46.22636 -11.3336428 0.0011925

4-2 -15.16 -32.60636   2.2863572 0.1005398

The above are the 95% confidence intervals for all pairs of means. We can see that the differences between 1-0, 2-0, 4-0 and 4-1 are significant, whereas 2-1 and 4-2 are not. 

Chapter 11: Multifactor ANOVA

Two-way ANOVA without replication

The instruction is once again anova, and the main difference is how data is stored. The data from Example 11.1 (page 434) can be stored as follows:

> ex11.1=data.frame(change=c(.97,.48,.48,.46,.77,.14,.22,.25,.67,.39,.57,.19),

+ brand=factor(rep(1:3,c(4,4,4))),wash=factor(rep(1:4,3)))

> ex11.1

   change brand wash

1    0.97     1    1

2    0.48     1    2

3    0.48     1    3

4    0.46     1    4

5    0.77     2    1

6    0.14     2    2

7    0.22     2    3

8    0.25     2    4

9    0.67     3    1

10   0.39     3    2

11   0.57     3    3

12   0.19     3    4
and then the ANOVA table is obtained as before:

> anova(lm(change~brand+wash,data=ex11.1))

Analysis of Variance Table

Response: change

          Df  Sum Sq Mean Sq F value   Pr(>F)   

brand      2 0.12822 0.06411  4.4323 0.065765 . 

wash       3 0.47969 0.15990 11.0549 0.007399 **

Residuals  6 0.08678 0.01446                    

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that we are asking for the model with no interactions since the variables brand and wash are entered in an additive way. We did not have much choice - we have a single observation per cell. The ANOVA table coincides with the Table 11.1 (page 439).  We see that brand has no significant effect but wash does.
To check for our assumption of  additivity of the model, we make a picture – as in Fig. 11.2 (page 437). The commands for producing a plot from the table of values would be:

> matplot(matrix(split(ex11.1$change,ex11.1$brand:ex11.1$wash),ncol=3), 

+ type="l",xlab="washing treatment",ylab="color change")

The command matplot produces a plot of points from a matrix, one line per column; matrix produces a matrix from the list of data; and split separates the data from the data frame ex11.1 according to the variables brand and wash. 

Multiple comparisons

The TukeyHSD instruction will obtain all of Tukey’s pairwise confidence intervals. For the example above,

> TukeyHSD(aov(change~brand+wash,data=ex11.1))

  Tukey multiple comparisons of means

    95% family-wise confidence level

Fit: aov(formula = change ~ brand + wash, data = ex11.1)

$brand

       diff        lwr         upr     p adj

2-1 -0.2525 -0.5134286 0.008428635 0.0565179

3-1 -0.1425 -0.4034286 0.118428635 0.2884825

3-2  0.1100 -0.1509286 0.370928635 0.4485076

$wash

           diff        lwr         upr     p adj

2-1 -0.46666667 -0.8065953 -0.12673802 0.0124339

3-1 -0.38000000 -0.7199286 -0.04007135 0.0315128

4-1 -0.50333333 -0.8432620 -0.16340469 0.0086330

3-2  0.08666667 -0.2532620  0.42659531 0.8141883

4-2 -0.03666667 -0.3765953  0.30326198 0.9806209

4-3 -0.12333333 -0.4632620  0.21659531 0.6185041

Since brand had no significant effect, it is not surprising that all of the intervals comparing pairs contain the value 0.  As for wash, the differences that are significant are those between 1 and all other factor levels (see the bottom of page 440).
Two-way ANOVA with replications

Once again, the procedure does not differ from what we have done earlier, and the main difference is in how the data is stored. The data in Example 11.7 (page 450) can be stored as:

> ex11.7=data.frame(yield=c(10.5,9.2,7.9,12.8,11.2,13.3,12.1,12.6,14,10.8,9.1,

+12.5,8.1,8.6,10.1,12.7,13.7,11.5,14.4,15.4,13.7,11.3,12.5,14.5,16.1,15.3,17.5,

+16.6,19.2,18.5,20.8,18,21,18.4,18.9,17.2),variety=factor(rep(c("H","Ife","P"),+c(12,12,12))),density=factor(rep(rep(c(10000,20000,30000,40000),
+c(3,3,3,3)),3)))

The plot of means by factors can be obtained from

>matplot(matrix(sapply(split(ex11.7$yield,ex11.7$density:ex11.7$variety),mean),+ ncol=4),type="l",xlab="variety",ylab="yield")
The picture suggests no effect from interaction but main effects due to both factors.  The ANOVA table is:

> anova(lm(yield~density*variety,data=ex11.7))

Analysis of Variance Table

Response: yield

                Df Sum Sq Mean Sq  F value    Pr(>F)    

density          3  86.69   28.90  18.2306 2.212e-06 ***

variety          2 327.60  163.80 103.3430 1.608e-12 ***

density:variety  6   8.03    1.34   0.8445    0.5484    

Residuals       24  38.04    1.58                       

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Which confirms our suspicions and coincides with Table 11.7 (page 452). Multiple comparisons can be analysed from the additive model, since we have already failed to reject interaction. Hence

> TukeyHSD(aov(yield~density+variety,data=ex11.7))

  Tukey multiple comparisons of means

    95% family-wise confidence level

Fit: aov(formula = yield ~ density + variety, data = ex11.7)

$density

                  diff        lwr        upr     p adj

20000-10000  2.9111111  1.3226494  4.4995728 0.0001375

30000-10000  4.3000000  2.7115383  5.8884617 0.0000002

40000-10000  2.4333333  0.8448716  4.0217951 0.0013148

30000-20000  1.3888889 -0.1995728  2.9773506 0.1033936

40000-20000 -0.4777778 -2.0662395  1.1106839 0.8455586

40000-30000 -1.8666667 -3.4551284 -0.2782049 0.0163721

$variety

          diff        lwr      upr     p adj

Ife-H 0.875000 -0.3722268 2.122227 0.2109855

P-H   6.791667  5.5444399 8.038893 0.0000000

P-Ife 5.916667  4.6694399 7.163893 0.0000000
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